

RAPID RIVER FISH HATCHERY

1999 BROOD YEAR REPORT

By:

Ralph E. Steiner, Fish Hatchery Assistant Manager Bradford W. Dredge, Fish Hatchery Manager 2

Nicola A. Johnson, Fish Culturist

TABLE OF CONTENTS

Page
ABSTRACT 1
INTRODUCTION 3
Funding Source 3
Location 3
OBJECTIVES 3
FACILITY DESCRIPTION 3
RECOMMENDED FACILITY IMPROVEMENTS 4
WATER SUPPLY 4
Water Source 4
Water Supply 5
STAFFING 5
FISH PRODUCTION 5
Adult Collection 5
Spring Chinook Salmon Returns to Rapid River 5
Hells Canyon Spring Chinook Salmon Returns 7
Inventory of Miscellaneous Species 7
Sport and Tribal Fishery 8
Holding and Spawning 8
Adult Treatments 8
Prespawning Mortality 8
Salmon Spawning 9
Incubation 9
Early Rearing 10
Final Rearing 10
Feed Use and Conversion 11
Fish Health 11
Diseases Encountered and Treatment 11
Organosomatic Index 11
Acute Losses 11
Other Assessments 12
Fish Marking 12
Fish Distribution 12
Egg Transfers 12
Fingerling Transfers 12
Smolt Releases 13
Cost of Production 13

TABLE OF CONTENTS continued

Page
HISTORICAL INFORMATION 14
ACKNOWLEDGEMENTS 15
LITERATURE CITED 16
APPENDICES 17
Appendix 1. Rapid River Hatchery production capacity 18
Appendix 2. Rapid River Hatchery pond volume 18
Appendix 3. Rapid River Hatchery adult holding pond temperatures (${ }^{\circ} \mathrm{F}$) for 1999 18
Appendix 4. Rapid River water quality analysis 19
Appendix 5. Rapid River marked chinook run timing for 1999 20
Appendix 6. Adult salmon returns to Rapid River during 1999 21
Appendix 7. Rapid River spring chinook lengths for 1999 22
Appendix 8. Length-frequency of salmon returning to Rapid River for 1999 23
Appendix 9. Rapid River chinook PIT-tag detection for 1999 24
Appendix 10. Injuries to chinook returning to Rapid River during 1999 27
Appendix 11. Rapid River unmarked chinook run timing for 1999 27
Appendix 12. Rapid River unmarked chinook lengths for 1999 28
Appendix 13. Rapid River steelhead run timing for 1999 29
Appendix 14. Steelhead returns to Rapid River during 1999 30
Appendix 15. Rapid River steelhead lengths for 1999 31
Appendix 16. Length-frequency of steelhead returning to Rapid River during 1999 32
Appendix 17. Rapid River bull trout run timing for 1999 33
Appendix 18. Bull trout returns to Rapid River during 1999 34
Appendix 19. Rapid River bull trout lengths for 1999 35
Appendix 20. Length-frequency of bull trout returning to Rapid River during 1999 36
Appendix 21. Species trapped in Rapid River during 1999 37
Appendix 22. Causes of prespawning adult mortality at Rapid River Hatchery during 1999 37
Appendix 23. Rapid River Hatchery egg enumeration for 1999 38
Appendix 24. Rapid River brood stock ELISA results for 1999 39
Appendix 25. Rapid River Hatchery initial raceway loading densities (1/19/00-3/13/00) 40
Appendix 26. Rapid River Hatchery final raceway loading densities (6/19/00) 40
Appendix 27. Rapid River Hatchery initial pond loading densities (6/30/00) 41
Appendix 28. Rapid River Hatchery pond loading densities at release (3/15/01) 41
Appendix 29. Feed for Brood Year 1999 at Rapid River Hatchery 42
Appendix 30. Eagle Fish Health Laboratory inspection results for Brood Year 1999 43
Appendix 31. Preliberation organosomatic index for Brood Year 1999 44
Appendix 32. Rapid River Hatchery marking summary for Brood Year 1999 45
Appendix 33. Smolts released from Rapid River Hatchery in 2001 (Brood Year 1999) 46
Appendix 34. Survival from eggs to smolts at Rapid River Hatchery for Brood Year 1999 47

TABLE OF CONTENTS continued

PageAppendix 35. Cost of production at Rapid River Hatchery for Brood Year 1999 47
Appendix 36. Returns to Rapid River Hatchery from 1964 to 2000 48
Appendix 37. Returns to Rapid River Hatchery by Brood Year 49
Appendix 38. Average feed and growth data for Rapid River Hatchery 51
Appendix 39. Release and transfer summary for Rapid River Hatchery for 1964 to 2000 52

Abstract

The Rapid River Fish Hatchery (RRFH) trap operated from March 16 to September 13, 1999. From May 24 to August 17, 863 marked chinook Oncorhynchus tshawytscha were collected. This included 244 adults (26\%) and 639 jacks (74\%).

There were 885 fish ponded at RRFH. This total includes 863 Rapid River returns and 22 received from Oxbow Fish Hatchery (OFH). The sex ratio of adult RRFH fish placed in holding was 78 males (32\%), 146 females (60%). The age-class structure was 639 three-year-olds (74.04\%), 152 four-year-olds (17.62\%), and 72 five-year-olds (8.34\%). The fish received from OFH included 19 jacks (86\%) and 3 adults (14\%). The sex ratio of the adult fish from OFH was one female, two males.

No sport fishery was opened on the Little Salmon River in 1999. The Idaho Fish and Game Commission elected not to open a fishery this year due to the low number of returning chinook salmon. Nez Perce Tribal officials opened a fishery this year. Harvest data was not reported. The Tribal fishery was confined to Rapid River below the hatchery trap.

Ancillary species were trapped in 1999. From May 25 to August 3, eight unmarked chinook were trapped and released into Rapid River above the trap. The age-class composition of the unmarked component of the 1999 salmon run was one three-year-old, six four-year-olds, and one five-year-old. From March 23 to June 1, 10 wild and 29 hatchery steelhead O. mykiss were trapped. The sex ratio of the returning steelhead was four wild males, six wild females, 15 hatchery males, and 14 hatchery females. Wild steelhead were released above the trap. Hatchery-produced steelhead were released into the Little Salmon River. From May 19 to August 4, 163 bull trout Salvelinus confluentus were trapped and released into Rapid River.

Prespawning mortality of the 885 fish placed in holding ponds was two adult males (0.2%), three females (0.3%), and two jacks (0.2%). This totals seven fish, or 0.8% of the fish held which is the lowest recorded at RRFH.

Spawning took place from August 9 to September 15, 1999. A total of 144 females were spawned. Average fecundity was 4,406 eggs/ female. All females were tested for Bacterial Kidney Disease (BKD) by enzyme linked immunosorbant assay (ELISA). Eggs from six females (about 26,436 eggs, based on average fecundity) with ELISA titers of 0.40 optical density (o.d.) or greater were culled. This left 608,084 green eggs (based on mechanical count) from 138 females. Survival to eye-up was 556,464 eggs or 91.5%. After spawning, 199,010 eggs were received from Lyons Ferry Hatchery. After primary pick of 5,925 bad eggs, 193,085 remained to be added to RRFH inventory. The total inventory at RRFH was 749,549 eyed-eggs.

Marking of Brood Year 1999 (BY99) fingerlings at RRFH took place from June 19 through June 28, 2000. There were 739,042 fish adipose fin (AD) clipped, and 345,288 marked with coded-wire-tags (CWT). During February 2001, 55,092 fish were marked with Passive Integrated Transponders (PIT tags) as part of the comparative survival study.

From March 15 to April 25, 2001, 736,601 smolts (39,090 lbs) were released from RRFH. All were released into Rapid River. Survival during the early rearing period was 99.4\%. Survival from swim-up to release was 99.1\%. Survival from marking to release was 99.8\%. Feed conversion was 1.30.

INTRODUCTION

Funding Source

The RRFH was constructed in 1964 by Idaho Power Company (IPC) to mitigate for the loss of spring chinook salmon after construction of Brownlee, Oxbow, and Hells Canyon dams. Mitigation mandated by the Federal Energy Regulatory Commission (FERC) required IPC to transplant a run of spring chinook salmon from the Snake River to the Salmon River Drainage and to provide funds for the annual production of three million spring chinook salmon smolts at this facility. These fish are designated for release into Rapid River and into the Snake River below Hells Canyon Dam. RRFH is staffed and operated by the Department and funded by IPC.

Location

The RRFH is located in Idaho County seven miles southwest of Riggins, Idaho. It lies on Rapid River, a tributary of the Little Salmon River. Travel distance for salmon to the ocean is approximately 600 river miles.

OBJECTIVES

The following are objectives of RRFH:

1. To produce three million spring chinook salmon smolts annually. The average size is to be approximately 20 fish/pound (fpp). These fish are to be released into Rapid River and the Snake River below Hells Canyon Dam.
2. To trap and spawn adult spring chinook salmon returning to Rapid River.
3. To evaluate various strategies and techniques for rearing spring chinook salmon.
4. To provide eggs and/or fry for supplementation purposes.

FACILITY DESCRIPTION

Fish-rearing facilities at RRFH consist of: 50 double vertical stack incubators, 12 outdoor concrete raceways ($6-\mathrm{ft} \times 90-\mathrm{ft}$), and six earthen rearing ponds (RP) with concrete walls: RP-1A and RP-1B (42-ft x 188-ft each), RP-2A and RP-2B (35-ft x 197-ft each), and RP-2C and RP-2D (37-ft x 173 -ft each). Holding facilities for adult salmon broodstock consist of one concrete holding pond (HP), HP-1 (80-ft x $25-\mathrm{ft}$), and one earthen holding pond, HP-2 (40-ft x 150-ft). These holding ponds provide space for up to 4,000 adult salmon prior to spawning. Production capacities by unit are listed in Appendix 1. Rearing space by unit is shown in Appendix 2.

The RRFH facilities include a fish trap located on Rapid River approximately 1.5 miles downstream from the hatchery. It is designed to trap and hold adult fish migrating upstream. The trap consists of a permanent wooden velocity barrier, a seven-step fish ladder, and a two-stage trap. Fish can be transferred from the trap by means of an Alaska Steep Pass Ladder to a 500gallon bucket that is lifted by an overhead hoist to a 1,000-gallon tank truck for transport to the hatchery. The trap facility allows unimpeded migration of anadromous and resident fish around the velocity barrier when trapping operations are not in progress.

RECOMMENDED FACILITY IMPROVEMENTS

Recently the gravity-flow system that provides backup water for incubation has deteriorated. Historically it provided enough water to supply to 38 incubator stacks. Currently the system is unreliable and is not used for incubation. Using a dye to trace the water, we have detected multiple breaks in the buried line. This is at least one of the causal factors. We use motorized pumps during power failures but the gravity system provided another dimension to our ability to supply water for incubation. The transition from electric pumps to the gravity supply was immediate and automatic. Switching to motorized pumps is a manual operation and requires hatchery personnel to monitor incubation water 24 hours a day throughout the entire incubation period. We believe restoration of this capability to be a high priority and critical to the integrity of our incubation plan.

We have identified two areas for improvement of the facility. One relates to adult salmon handling and the other to general hygiene and disease control. Average prespawning mortality at RRFH from 1970 to 1994 was 18.3%, with holding in all ponds. Examination of prespawning mortality records show that a sharp increase occurs after first sort and subsequent handling of the adults. Our current method of gathering fish for sorting involves netting all adult fish in a large seine each spawn day. This method causes severe handling stress twice each week during the spawning season. An improved system for crowding adult fish would reduce prespawning mortality. This approach would require modification of HP-2 to provide a better environment for holding adult salmon. The other area of improvement involves the way in which water is supplied to RP-1. All water entering RP-1 must pass through the raceways. When fingerlings are in the raceways, RP-1 receives their effluent. This can be a sanitation problem if detritus from sweeping raceways is directed into RP-1. Direct supply to RP-1 would solve this problem, however, the handling of fish waste from all rearing systems remains. This question must be addressed as the Environmental Protection Agency (EPA) re-evaluates hatchery discharge permits.

WATER SUPPLY

Water Source

Rapid River originates in Adams County and flows through an undeveloped canyon before reaching the hatchery. The drainage is protected as part of the Wild and Scenic Rivers Act. It is not subjected to perturbations, such as logging or road building. Rapid River generally provides
adequate water for rearing salmon. The steep nature of the drainage makes it a highly variable river. Spring runoff and flash floods can be violent and carry tons of silt into the hatchery. Water flow data for Rapid River are recorded by the National Forest Service (NFS) but are not available for the spring of 1999 at this time. Rapid River crested several times between January and midJune, however the runoff pattern was more docile this year than in recent years. Water temperature also varied considerably. The minimum in January 1999 was $34.5^{\circ} \mathrm{F}$, and the maximum in August was 57.0F. Pond temperatures during adult holding are shown in Appendix 3.

Water Supply

Hatchery water is obtained through one 30 -inch and one 24 -inch pipeline. A 5 -ft-high wooden diversion dam provides the necessary hydraulic head. Under a state license, RRFH has specific water rights to $28 \mathrm{ft}^{3} / \mathrm{s}$ for the hatchery facility and $18.6 \mathrm{ft}^{3} / \mathrm{s}$ for the fish trap. This water is diverted from Rapid River and then returned after passing through the hatchery. Rearing units operate on gravitational flow. Water for the incubation system is pumped from the headrace by one of two 5600-W electric pumps. A gasoline-operated pump and a gravitational-flow filter bed provide water during electrical failures. Water quality parameters are listed in Appendix 4. Effluent is monitored according to EPA guidelines.

STAFFING

Three permanent employees: a Fish Hatchery Manager II, an Assistant Fish Hatchery Manager, and a Fish Culturist staff RRFH. Approximately five seasonal employees are hired each year. Housing accommodations include three residences for the permanent staff and a $65-\mathrm{ft} \times 14-\mathrm{ft}$ mobile home for seasonal employees.

FISH PRODUCTION

Adult Collection

Spring Chinook Salmon Returns to Rapid River

The RRFH fish trap operated from March 16 through September 13, 1999. Water conditions were benign for Rapid River during the steelhead and salmon runs, and did not inhibit fish migration. The trapping operation was interrupted for sand removal on May 21, June 2, and June 8. It was turned off for high water at night on May 24 and May 26. These closures were due to runoff from a higher than normal snowpack, however the associated cleanup required closing the trap less often than usual this year.

The first marked chinook was trapped on May 24 and the last on August 17, 1999. The last week of June marked the peak of the run. This year 863 marked chinook were trapped. They were collected for spawning and transported to holding ponds at the hatchery (Appendices 5 and 6).

Hatchery management and research staff met before the 1999 run to establish data collection standards that would meet agency needs. It was agreed that data collected for research and hatchery evaluation purposes should be collected at spawning and entered into a database.

Data collected on run timing and total numbers trapped are based on all 863 returns to Rapid River Trap (Appendices 5 and 6). Fin samples were randomly taken throughout the run from 19 marked and one unmarked chinook for genetic analysis. Trapping statistics, including fork lengths, injuries, marks, and tags were recorded for Rapid River returns at the trap. Fin clips recorded for this sample were all AD clips. Our CWT detector detected 196 CWT or 22.1% of the 885 fish placed in holding (863 trapped at RRFH and 22 received from OFH). The entire run was scanned for PIT-tags and scrutinized for jaw tags, visual identification (VI) tags or radio transmitters. These data were entered into the database.

There were 885 fish ponded, including 863 Rapid River returns and 22 received from OFH. As part of an agreement with the Nez Perce Tribe, most of the jacks removed from the trap were ponded in HP-2 for distribution to the tribe. All adults and the remaining jacks were held in HP-1. The adult sex ratio of the Rapid River run was 78 adult males, 146 adult females, and 639 jacks. This included 288 fish held for broodstock (ponded in HP-1) and 575 jacks (ponded in HP-2). Polymodal analysis of length frequencies and data from CWT returns were used to determine ageclass criteria. Age-class composition was 639 (74.04%) three-year-olds (< 62 cm), 152 (17.62%) four-year-olds ($62-83 \mathrm{~cm}$), and 72 (8.34\%) five-year-olds (> 83 cm) (Appendices 7 and 8).

Ancillary species were collected, recorded, and released. Unmarked chinook, unmarked steelhead, and bull trout were released into Rapid River above the trap, and marked steelhead were released into the Little Salmon River about one mile above its confluence with Rapid River. Scale samples were collected from wild steelhead.

Seventy PIT-tags were detected in marked Rapid River, marked Snake River, and unmarked Rapid River salmon (Appendix 9). Of the 70 PIT-tags read by the scanners, 37 were read at the trap, 13 were read at spawning and 20 were read both times. This indicates that although redundant scanning is a good practice, there may be a problem with the reliability of our equipment or methods. If we look at the ratio of percent PIT-tag returns and percent PIT-tag releases by age-class, the result is; $4 \%: 5 \%$ for three-year-olds, $27 \%: 47 \%$ for four-year-olds, and $7 \%: 5 \%$ for five-year-olds. There may be some overlap of age-classes, but the data suggests a low detection rate for four-year-old adult salmon while three- and five-year-old age-classes contained the expected number of PIT-tagged fish. It is unclear if this is because of differential survivorship or a marking problem, or if the problem exists with subsequent detection. The latter can be addressed for next year's run. There were two fish with jaw tags trapped, but no radio or VI tags were observed this year.

Injuries were documented throughout the trapping season. When multiple injuries were present on the same fish, they were recorded separately. Injuries consisted of 27 nitrogen burns, one gill net scar, 39 other types of injuries (Appendix 10).

Hells Canyon Spring Chinook Salmon Returns

Personnel from OFH and IPC transported 22 chinook from the OFH trap to RRFH. The ageclass composition was three five-year-olds, and 19 jacks. The sex ratio was one adult female, two adult males and 19 jacks. Seventeen of the jacks were ponded in HP-2 and the remaining five fish were added to the broodstock in HP-1. For more information, see the Oxbow Hatchery Spring Chinook Salmon Run Report for 1997.

Inventory of Miscellaneous Species

Unmarked chinook entered the trap from May 25 through August 3, 1999. The timing of this part of the run is shown in Appendices 6 and 11. This component of the Rapid River run included seven adults and one jack. The fish were measured to the nearest centimeter fork length (Appendices 8 and 12), injected with antibiotics, and then released above the trap into Rapid River. The released salmon received a caudal fin punch to identify recaptures. Age-class composition of this part of the salmon run was one three-year-old (12.5\%), six four-year-olds (75.0%), and one five-year-old (12.5\%). The sex ratio was six males (75.0\%), one female (12.5\%), and one jack (12.5\%).

From March 23 through June 1, 1999, 39 adult steelhead were trapped (Appendices 13 and 14) and measured to the nearest centimeter fork length (Appendices 15 and 16). The steelhead run included 10 wild fish and 29 hatchery fish. The sex ratio was 4 wild males, 6 wild females, 15 hatchery males, and 14 hatchery females. Hatchery steelhead were transported back to the Little Salmon River and released approximately one mile upstream from its confluence with Rapid River. Wild steelhead were released into Rapid River upstream from the trap. The released steelhead received a caudal fin punch to identify recaptures.

A total of 163 bull trout were trapped from May 19 through August 4, 1999 (Appendices 17 and 18). These fish ranged in size from 33 cm to 63 cm total length (Appendices 19 and 20). Department researchers continued a study of bull trout movement this year. Hatchery personnel assisted them with implanting PIT-tags, marking, and various other aspects of their study. Further information regarding this study should be obtained from the Department Research Office. An inventory of all species trapped in 1997 is shown in Appendix 21.

Sport and Tribal Fishery

In 1999, the Fish and Game Commission voted not to allow a salmon sport fishery due to the extremely low number of returning chinook. However, the Nez Perce Tribe harvested salmon in Rapid River. The number of fish harvested by the Tribe was not reported.

Holding and Spawning

Adult Treatments

Hatchery personnel removed fish from the trap daily and processed them on site. They were handled as little as possible and processed while the fish were immersed. All chinook placed in HP-1 or released above the weir were anesthetized with 40 ppm MS-222, measured to the nearest centimeter fork length, and given an intraperitoneal injection of Erythromycin-based injectable (Gallimycin-200) at $20 \mathrm{mg} / \mathrm{kg}$ body weight. The antibiotic was administered according to veterinary extra-label usage as prescribed by Dr. Dave Hunter at the Department Caldwell Wildlife Laboratory. Fish placed in HP-2 were not anesthetized or injected.

The holding period extended from May 24 to September 20, 1999. This year 863 marked Rapid River chinook were placed in holding ponds. An additional 22 chinook were received from OFH. This yielded 885 chinook held at RRFH. From this, 544 jacks were removed from HP-2 and given to the Nez Perce Tribe. The remaining jacks from HP-2 were not injected and therefore were not used for spawning. We combined holding of Rapid River returns with Snake River returns in HP-1. Our holding pond HP-1 is concrete and provides a better environment than HP-2 does for holding prior to spawning. It also allows less stressful handling during the sorting and spawning process (see the sections entitled Recommended Facility Improvements and Prespawning Mortality). The fish received from OFH were marked with two left-operculum punches to identify them for separate data gathering. These punches often healed over prior to spawning. Notations of these punches on spawning records and on mortality records were inconsistent. Therefore, the identification of Snake River fish is omitted from this report.

Formalin treatments were administered to HP-1 three times each week from June 21 through September 17. Treatments consisted of precharging the pond with formalin to 170 ppm and then introducing formalin into inflow water at a rate of 170 ppm for one hour. During the holding and spawning period, water temperatures ranged from $3.9^{\circ} \mathrm{C}$ to $13.9^{\circ} \mathrm{F}$ (Appendix 3). The Walco Company hauled carcasses from holding and spawning to a landfill in Montana each week.

Prespawning Mortality

The combined prespawning mortality for Rapid River and Hells Canyon chinook was seven fish or 0.8% of the 885 fish placed in holding. After August 25, males were not considered in prespawning mortality. The sex ratio was two adult males (0.2\%), three females (0.3\%), and two jacks (0.2%). This mortality rate is the lowest recorded at RRFH. The improvement may be
due to precharging the ponds with formalin before formalin-drip treatments, low holding temperatures, and low density. The fish were also in generally good condition upon arrival.

Hatchery personnel did routine necropsies of all prespawning mortalities. Causal factors for prespawning mortality are unknown and are not discussed in this report. Appendix 22, recording causal factors, was included to be consistent with previous reports and to show the lack of historical causes. Snouts were collected from fish in which a CWT was detected and sent to the Department Fish Marking Laboratory at Lewiston, Idaho.

Salmon Spawning

In 1999, 144 female chinook were spawned from August 9 to September 15. The eggs from six females were culled as part of a disease management program. About 26,436 eggs (based on an average fecundity of 4,406 eggs/female) were culled. The remaining 138 females produced 608,084 green eggs (based on electronic counts). Complete egg enumeration and disposition data are compiled in Appendix 23. Each female was sampled during spawning for BKD analysis. The results of enzyme-linked immunosorbant assay (ELISA) tests are shown in Appendix 24.

Spawning followed standard procedure recommended by the Department for split-random cross of two males per female. Females were killed with a blow to the head. The eggs from each female were put in a colander to drain off the ovarian fluid. Then they were transferred to two buckets where they were fertilized with the milt from two males and mixed with approximately 150 ml of temperature-adjusted well water. Then the two buckets were combined to ensure that all females were fertilized with a fertile male. Jacks were included for fertilization, and no male was used more than three times. Males were given a right-operculum punch to identify them as having been spawned and then returned to the holding pond. All fertilized eggs were water hardened for 30 minutes in 100-ppm iodophore. After water-hardening, green eggs were placed in vertical stack incubators that were set to a flow rate of $6 \mathrm{gal} / \mathrm{min}$.

Incubation

The 1999 egg-take (after culling six females) was 608,084 green eggs from 138 females. The average fecundity was 4,406 eggs/female. After primary pick of 51,620 bad eggs, 556,464 eyed-eggs remained. Eye-up was 91.5%. Eggs were incubated at a rate of one female per tray to segregate individual fish pending results of ELISA studies. After the ELISA results were received, eggs from females with an optical density (o.d.) reading of 0.40 or greater were culled and discarded.

Two shipments of eyed eggs from 58 females were received from Lyon's Ferry Hatchery. The eggs were not shocked or picked before they were transferred, but were shocked, picked, and counted when they arrived at RRFH. A total of 199,010 eyed eggs, yielded 193,085 after primary pick off of 5,925 bad eggs. The fecundity was 3,431 eggs per female, and eye-up was 97.0%. This eye-up percentage is probably not accurate and secondary pick off may be high because the eggs were not allowed to rest between shocking and primary pick.

The total number of eggs remaining for incubation at RRFH was 749,549. All eggs spawned and reared at RRFH were shocked at 500 daily temperature units (DTU) by pouring them from the trays into water. They were picked two days later using a salt bath or by hand. A Jensorter egg counter was used to inventory eggs. After counting, the eggs were returned to clean trays. At 1,000 DTUs trays were picked again, and a third pick was performed at 1,500 DTUs. All trays were rodded weekly after 300 DTUs. Formalin was administered to each incubator stack at a rate of $1,667 \mathrm{ppm}(1: 600)$ for 15 minutes to retard external mycosis. This procedure was discontinued after each lot accumulated 800 DTUs. Mycosis was controlled, and fry will be ponded at approximately 1750 DTUs.

Early Rearing

Fry were ponded from December 6, 1999 through March 13, 2000. The first two lots were initially placed in four indoor vats and a feed study was performed to compare starter feeds. For more information regarding this study contact RRFH. The subsequent lots were transferred to five raceways when they reached 1750 DTUs. Initially, the raceways were densely loaded to facilitate feed training. After the fish were acclimated and were feeding well, we increased raceway volume to lower Density Indices (DI) (Piper et al. 1982) below 0.3. Initial water depth was 24 in, and flow was adjusted to $0.6 \mathrm{ft}^{3} / \mathrm{s}$. As the fish grew, water depth and flows were increased to a maximum depth of 36 in and flow of two $\mathrm{ft}^{3} / \mathrm{s}$. The fingerlings remained in the raceways until marking when they were transferred to rearing ponds. The average weight at the start of marking on June 19, 2000, was 128 fpp and ranged from 110 fpp to 140 fish/pound (fpp). Average DI and Flow Index (FI) (Piper et al. 1982) were 0.27 and 0.78 . Initial raceway density is shown in Appendix 25, and final raceway density is shown in Appendix 26. Mortality during early rearing was 4,750 fish or 0.64% of the total of inventory reported at marking and the mortality recorded prior to marking.

Final Rearing

Rearing ponds were disinfected with a chlorine bath at 200 ppm before fish were ponded. The fingerlings were transferred from raceways to ponds through 4-inch irrigation pipe. The marking crew reported that 739,042 fingerlings were marked and moved from June 19 through June 28, 2000. This total was an increase of 3.4% from hatchery inventory for the raceways. As in the past, hatchery inventory numbers were adjusted to the number reported marked. Initial pond loading densities are reported in Appendix 27. Fingerlings were ponded at a mean length of 2.7 in and grew to 5.2 in by release. Average DI before volitional releases began on March 15, 2001, was 0.11 , and the average FI was 1.13 (Appendix 28). The maximum DI recommended by the Department is 0.30 . The maximum recommended Fl for O_{2}-saturated water at $41^{\circ} \mathrm{F}$ and 2100 ft above sea level is 2.42 . These parameters were within prescribed limits.

Mortality during final rearing was 1,755 fish or 0.24% of the combined inventory of those reported at marking, those recorded as mortalities prior to marking. Total mortality from swim-up through release was 6,505 fish or 0.88%.

Feed Use and Conversion

A total of 54,471 lbs of feed was used for Brood Year 1999 fish prior to release. The overall feed conversion was 1.30. Specific data on feed types and sizes are listed in Appendix 29.

Two medicated feed treatments were administered to Brood Year 1999 fingerlings. Starting May 8, 2000, and continuing for 28 days, they were fed 2.25\% Aquamycin-100 at a rate of 2.2\% body weight/day to yield a dose of $100 \mathrm{mg} / \mathrm{Kg} /$ day Erythromycin. Then starting September 18, 2000, and continuing for 28 days, they were fed 4.5% Aquamycin-100 at a rate of 1.1% body weight/day to yield a dose of $100 \mathrm{mg} / \mathrm{Kg} /$ day Erythromycin. Treatments were performed according to guidelines set forth in Investigational New Animal Drug (INAD) number 6013/4333 and were followed by toxicity testing.

Fish Health

Portions of this section of the Rapid River Hatchery 1999 Brood Year Report are reproduced with permission from Mr. Doug Munson of the Eagle Fish Health Laboratory. A summary of Eagle Health Laboratory results for individual inspections of Brood Year 1999 juveniles and broodstock is shown in Appendix 30.

Diseases Encountered and Treatment

The RRFH did not experience losses due to an epizootic of infectious agents during the Brood Year 1999 year-class during 2000 and 2001. These fish were treated with prophylactic erythromycin medicated feed, under INAD 6013/4333, to reduce the chance of an epizootic of BKD. Losses to other bacterial, viral, and mycotic agents were minimal. Adult salmon returning to this facility were injected with $20 \mathrm{mg} / \mathrm{KG}$ of erythromycin. These injections are targeted to reduce prespawning mortality from Renibacterium salmoninarum.

Organosomatic Index

The Organosomatic Index in this context is a measure of fish health developed as part of the Autopsy-Based Fish Health/Condition Assessment System (Goede and Houghton 1987). A summary of the fish autopsy is shown in Appendix 31.

Acute Losses

Neither acute nor chronic losses occurred during the rearing of Brood Year 1999 chinook at RRFH.

Other Assessments

The chinook produced at this facility during this brood year were in excellent condition and preliberation sampling demonstrated low amounts of Renibacterium, and did not detect viral replicating agents or Myxobolus cerebralis, the causative agent of whirling disease. A different myxosoporidan, other than the whirling disease agent, was detected during routine preliberation sampling. Once again, external mycosis was not a problem at this facility.

The RRFH needs a modern brood holding facility. This would certainly reduce stress on holding, handling, and spawning adult chinook. A modern holding facility would reduce prespawning mortalities and ELISA titers for Renibacterium.

Fish Marking

Protocol requires the adipose fin to be removed from all hatchery-reared salmon. The marking crew reported 739,042 fish were AD-clipped and CWT were placed in 345,288 . Marking occurred from June 19 to June 28, 2000. After marking, fish were sampled monthly for a quality check of AD clips. A total of 1,176 fish were sampled. The results showed 87.5% with full clips, 1.7% without clips, and 10.8% with marginal clips.

PIT-tags were placed in 55,092 fish from February 5 through February 8, 2001. As the fish were marked they were transferred from RP-2A to RP-2B. During the remainder of the final rearing period, all mortalities from RP-2B were collected and scanned for PIT-tags.

Specific release information about marked fish is presented in Appendix 32. For more information regarding marking consult the Annual Release Summary of Marked Salmon and Steelhead published by the Department.

Fish Distribution

Egg Transfers

After the 1999 spawning season 199,010 eyed-eggs were received from the Lyons Ferry Hatchery. No eggs were transferred from RRFH in 1999.

Fingerling Transfers

No brood year 1999 fingerlings were transferred to or from RRFH.

Smolt Releases

There were 736,601 smolts ($39,090 \mathrm{lbs}$) released from RRFH in 2001. All of these were released into Rapid River at the hatchery. Releases took place from March 15 through April 25, 2001. Release data are reported in Appendix 33.

Final sample counts were taken at the start of volitional smolt releases on March 15, 2001. Smolts averaged 18.2 fpp and 5.2 in fork length. Rearing densities at the time of release are listed in Appendix 31. Based on visual observations, we estimated that about 99\% of the smolts emigrated volitionally. The remaining fish were seined from the ponds. The last fish emigrated on April 25. Survival from marking to release was 99.8\% (Appendix 34).

Cost of Production

The total cost of production for any specific brood year is not a straightforward calculation. At RRFH, the rearing cycle is 19 months. For any brood year, the cycle extends from September when spawning starts, through March nineteen months later, when the smolts are released. Cost of production has been reported as the total cost incurred by IPC for the entire 19-month period. Overlap in brood year classes causes the expenditure for September through March of the first year and the expenditure for September through March of the second year to be reported twice. The result is inflated estimates of production cost. Our traditional method reports total cost for 14 of the 19-month rearing cycle in three successive brood year reports. Thus, we report inflated production cost figures because we report the total cost paid by IPC for the entire period rather than costs associated with production of a given brood year. To address this problem, IPC has supplied us with total cost broken down by month (letter dated June 8 2001, from Paul Abbott, IPC Hatchery Biologist, P.O. Box 70, Boise, Idaho). One approach would be to apportion each month's cost by the percentage that a given brood year's fish comprised of the total hatchery inventory. In our report for brood year 1995, we proposed this apportionment plan and compared total cost. The method would have resulted in reporting cost numbers only once. The resulting cost per pound that year was one third the cost calculated using the old method. At the IHOT evaluation meeting held March 8, 1996, we were directed to continue to use the old method to be consistent with data from previous years. We recommend a future meeting with further discussion on this concern. For now, we continue to report total cost paid by IPC for the entire period.

The total cost paid by IPC for September 1, 1999 through March 30, 2001, was \$898,243.13 (letter dated June 8 2001, from Paul Abbott, IPC Hatchery Biologist, P.O. Box 70, Boise, Idaho). This was used to calculate the cost of production data listed in Appendix 35. For comparison, the total cost apportioned by percent of total monthly inventory for the same period was $\$ 367,210.20$. This is 41% of the total cost for the same period, and addresses the problem of reporting the same dollars twice. It also has the effect of smoothing cost/pound or cost/1,000 over years with greater or smaller inventory. This may be important because fixed costs stay the same from year to year while variable costs, such as feed, change with inventory. Using this method cost/thousand fish went from $\$ 1219.44$ to $\$ 498.85$ and cost/pound went from $\$ 22.98$ to $\$ 9.39$.

HISTORICAL INFORMATION

As always, we have included some archival information for context. Historic information about returns by return year is listed in Appendix 36 and by brood year in Appendix 37. Average feed and growth statistics are listed in Appendix 38. Release and transfer information is listed in Appendix 39.

ACKNOWLEDGMENTS

The crew at RRFH would like to thank Mr. Paul Abbott and the fisheries staff at IPC for their support and assistance in helping us maintain and improve the hatchery facility. We would also like to thank Department personnel who helped us during the spawning season. Our gratitude goes to Officer Brian Holbrook and other conservation officers for security at the hatchery and trapping facility. In addition, we extend our appreciation to Doug Munson and the Eagle Fish Health Lab staff for diagnostic work at the hatchery and assistance in preparing this document. This team effort helps Rapid River continue to be a successful hatchery.

LITERATURE CITED

Goede, R. W., and S. Houghton. 1987. ASUM: A computer program for the Autopsy-Based Fish Health/Condition Assessment System. Utah Division of Wildlife Resources Fisheries Experiment Station, 1465 West 200 North, Logan, Utah 84321.

Piper, P. G., I. B. McElwain, L. E. Orme, J.P. McCraren, J.R. Leonard. 1982. Fish hatchery management. United States Department of the Interior Fish and Wildlife Service, Washington D.C.

APPENDICES

Appendix 1. Rapid River Hatchery production capacity.

Rearing unit	Volume		Carrying capacity	
Incubators	800	Trays	$3,200,000$	Eggs
Raceways (12)	1,890	ft^{3}	$3,800.000$	Fry
Rearing Ponds 1	54,625	ft^{3}	$1,000,000$	Smolts
Rearing Ponds 2	92,827	ft^{3}	$2,000,000$	Smolts
Adult Holding Pond 1	12,000	ft^{3}	1,000	Adults
Adult Holding Pond 2	24,000	ft^{3}	3,000	Adults

Appendix 2. Rapid River Hatchery pond volume.

Rearing/holding area	Volume $\left(\mathrm{ft}^{3}\right)$
Rearing pond 1A	27,496
Rearing pond 1B	27.129
Rearing pond 2A	23,858
Rearing pond 2B	22,607
Rearing pond 2C	22,468
Rearing pond 2D	23,894
Adult holding pond 1	12,000
Adult holding pond 2	24,000

Appendix 3. Rapid River Hatchery adult holding pond temperatures (${ }^{\circ} \mathrm{F}$) for 1999.

Month	Maximum	Minimum	Average	Ten-year average
April	47.3	36.9	42.3	45.0
May	49.6	39.0	44.1	46.6
June	49.6	41.7	46.1	50.9
July	54.5	47.1	50.3	54.3
August	57.0	50.2	53.1	55.8
September	52.8	42.5	48.6	51.4

Appendix 4. Rapid River water quality analysis.

Analyte	PQL	Result	Units
Nitrate/N	0.05	ND	m/L
Nitrite	0.05	ND	m / L
Sulfate	1	14	m / l
Orthophosphate	0.05	ND	m / L
Ammonia/N	0.5	ND	m/L
Alkalinity	10	74	mg / L as CaCO 3
Hardness	10	80	mg / L as CaCO 4
pH		7.63	
Hydrogen Sulfide	0.2	ND	m/L
Chlorine	0.1	ND	m/L
Arsenic	1	ND	$\mu \mathrm{g} / \mathrm{L}$
Cadmium	1	ND	$\mu \mathrm{g} / \mathrm{L}$
Chromium	1	ND	$\mu \mathrm{g} / \mathrm{L}$
Mercury	1	ND	$\mu \mathrm{g} / \mathrm{L}$
Lead	1	ND	$\mu \mathrm{g} / \mathrm{L}$
Selenium	1	ND	$\mu \mathrm{g} / \mathrm{L}$
Silver	1	ND	$\mu \mathrm{g} / \mathrm{L}$
Iron	30	120	$\mu \mathrm{g} / \mathrm{L}$
Zinc	1	51	$\mu \mathrm{g} / \mathrm{L}$
Cooper	1	ND	$\mu \mathrm{g} / \mathrm{L}$
Aldrin	0.1	ND	$\mu \mathrm{g} / \mathrm{L}$
Endrin	0.1	ND	$\mu \mathrm{g} / \mathrm{L}$
Dieldrin	0.1	ND	$\mu \mathrm{g} / \mathrm{L}$
Heptachlor	0.1	ND	$\mu \mathrm{g} / \mathrm{L}$
Chlordane	0.1	ND	$\mu \mathrm{g} / \mathrm{L}$
Methoxychlor	0.1	ND	$\mu \mathrm{g} / \mathrm{L}$
Lindane	0.1	ND	$\mu \mathrm{g} / \mathrm{L}$
Guthion	0.1	ND	$\mu \mathrm{g} / \mathrm{L}$
Malathion	0.1	ND	$\mu \mathrm{g} / \mathrm{L}$

PQL = Practical Quantitation Limit.
ND = not detected (<PQL)

Appendix 5. Rapid River marked chinook run timing for 1999.

Week ending	Number of fish	Percentage of marked chinook
May 22	0	0.00
May 29	15	1.73
June 5	3	0.35
June 12	9	1.04
June 19	33	3.82
June 26	33	3.82
June 3	478	55.39
July 10	166	19.24
July 17	53	6.14
July 24	15	1.74
July 31	24	2.78
August 7	30	3.48
August 14	2	0.23
August 21	2	0.23
August 28	0	0.00
Total	863	100.00

Appendix 6. Adult salmon returns to Rapid River during 1999.

WEEKLY TRAP COUNTS

Appendix 7. Rapid River spring chinook lengths for 1999.

Fork length (cm)	Number of fish	Fork length (cm)	Number of fish
<38	3	81	4
38	3	82	3
39	3	83	2
40	4	84	9
41	5	85	7
42	12	86	8
43	18	87	9
44	17	88	10
45	41	89	5
46	56	90	4
47	82	91	3
48	59	92	2
49	75	93	1
50	65	94	2
51	57	95	4
52	65	96	5
53	33	97	0
54	18	98	1
55	4	99	2
56	4	100	0
57	4	>100	0
58	1	Total	863
59	1		
60	0		
61	1		
62	2	Adult sex ratio	
63	0		
64	0	$78 \text { (34.82\%) }$	Males
65	0	$146 \text { (} 65.18 \%)$	Females
66	0	224 (100.00\%)	*Total
67	1		
68	3		
69	6	Age-class data	
70	4	639 (74.04\%)	Jacks
71	10	152 (17.62\%)	Four-year-olds
72	16	72 (8.34\%)	Five-year olds
73	18	863 (100.00\%)	Total
74	11		
75	18		
76	14	Age-class criteria	
77	16	$<62 \mathrm{~cm}=$ Three-year old $63-83 \mathrm{~cm}=$ Four-year-old $>83 \mathrm{~cm}=$ Five-year-old	
78	21		
79	6		
80	8		

[^0]

Appendix 9. Rapid River chinook PIT-tag detection for 1999.

Capture date	PIT-tag code	W/H	Fork length (cm)	Clips	Other tags	$\begin{aligned} & \text { Sex } \\ & \text { M/F } \end{aligned}$	Disposition	Scale bag \#	Comments
5/24	222D1B445A	H	73	AD		M	Ponded, HP-1 Spawned 9/7/99		
5/24	415614722C	H	75	AD		U	Ponded, HP-1		
5/25	222B361B65	H	74	AD		U	Ponded, HP-1		
5/25	7F7A082350	H	71	AD		F	Ponded, HP-1 Spawned 8/26/99		Female \# 3486
6/14	222C676145	H	73	AD	JT\# C4-172	F	Ponded, HP-1 Spawned 8/23/99		Female \# 3452
6/15	222B3B1A09	H	75	AD		U	Ponded, HP-1		
6/21	222C5F0955	H	67	AD		M	Ponded, HP-1		
6/24	51085D361E	H	50	AD		M	Ponded, HP-1		
6/28	510F3C5402	H	49	AD		M	Ponded, HP-1		
6/28	5131691C23	H	46	AD	CWT	M	Ponded, HP-1		
6/28	41560A6F7D	H	74	AD		U	Ponded, HP-1		
6/28	510F13217F	H	55	AD	CWT	M	Ponded, HP-1		
6/28	5119390075	H	51	AD		M	Ponded, HP-2		
6/28	511B2A376D	H	49	AD		M	Ponded, HP-2		
6/29	2235234040	H	72	AD		F	Ponded, HP-1 Spawned 8/26/99		Female \# 3481
6/29	22303E1939	H	74	AD		F	Ponded, HP-1 Spawned 8/23/99		Female \# 3444
6/29	41556E6566	H	83	AD		M	Ponded, HP-1 Spawned 9/7/99		
6/29	222D7E602D	H	62	AD		M	Ponded, HP-1 Spawned 9/10/99		
6/29	4154020E04	H	77	AD		U	Ponded, HP-1		
6/30	222E59294A	H	76	AD		U	Ponded, HP-1		
6/30	5131622105	H	47	AD		M	Ponded, HP-2		
6/30	2237593019	H	72	AD		M	Ponded, HP-1 Spawned 8/30		
6/30	5139781F46	H	46	AD	CWT	M	Ponded, HP-2		
7/1	2230206626	H	72	AD		F	Ponded, HP-1 Spawned 8/26/99		Female \# 3496
7/1	223640521C	H	76	AD		U	Ponded, HP-1		
7/2	5105710875	H	46	AD		M	Ponded, HP-2		
$7 / 2$	5134380579	H	50	AD		M	Ponded, HP-2		
$7 / 2$	5102706305	H	44	AD		M	Ponded, HP-2		
7/2	204843597C	H	72	AD		F	Ponded, HP-1 Spawned 9/2/99		Female \# 35
$7 / 2$	4169506138	H	90	AD	JT \# C4-164	F	Ponded, HP-1 Spawned 9/2/99		Female \#36
7/2	222C653C5A	H	81	AD		U	Ponded, HP-1		
$7 / 2$	41560E7749	H	73	AD		U	Ponded, HP-1		
7/2	51376D0608	H	53	AD	CWT	M	Ponded, HP-2		

Appendix 9. (Continued)

Capture date	PIT-tag code	W/H	Fork length (cm)	Clips	Other tags	$\begin{aligned} & \text { Sex } \\ & \text { M/F } \end{aligned}$	Disposition	Scale bag \#	Comments
7/3	51397 A3647	H	50	AD	CWT	M	Ponded, HP-2		
7/3	511C60424E	H	47	AD		M	Ponded, HP-2		
7/3	51310C4222	H	43	AD	CWT	M	Ponded, HP-2		
7/3	415429472B	H	76	AD		U	Ponded, HP-1		
7/3	221C370A36	H	84	AD		F	Ponded, HP-1 Spawned 8/30/99		Female \# 20
7/3	41534C783C	H	76	AD		U	Ponded, HP-1		
7/3	222C773968	H	76	AD		M	Ponded, HP-1 Spawned 8/30/99		
$7 / 4$	5115622530	H	45	AD		M	Ponded, HP-2		
714	222D402130	H	69	AD		U			
$7 / 6$	5134F2346	H	52	AD		M	Ponded, HP-2		
7/6	5138103451	H	42	AD		M	Ponded, HP-2		
7/6	45163A616E	H	73	AD		M	Ponded, HP-1 Spawned 8/30/99		
7/6	22363D007A	H	74	AD		F	Ponded, HP-1 Spawned 8/23/99		Female \# 3464
7/6	2237173921	H	77	AD		U	Ponded, HP-1		
7/6	222B29796F	H	75	AD		F	Ponded, HP-1 Spawned 8/19/99		Female \# 3426
7/8	512F512E41	H	44	AD		M	Ponded, HP-2		
7/8	5114763916	H	49	AD		M	Ponded, HP-2		
7/8	5136167D07	H	49	AD	CWT	M	Ponded, HP-2		
7/8	4155334858	H	77	AD		U	Ponded, HP-1		
7/22	222A531329	H	88	AD		F	Ponded, HP-1 Spawned 8/16/99		Female \# 3422
7/26	510E307756	H	49	AD	CWT	M	Ponded, HP-1 Spawned 8/25/99		Snout bag \# 78
7/28	51240 C 2072	H	47	AD		M	Ponded, HP-2		
8/2	4151106728	H	87	AD		F	Ponded, HP-1 Spawned 8/23/99		Female \# 3461
8/10	1F7E4F672D	H	98	AD		M	Ponded, HP-1 Spawned 8/26/99		
*	4152772E2E	H	88	AD		F	Ponded, HP-1 Spawned 8/23/99		Female \# 3446
*	2043322F3C	H	71	AD		F	Ponded, HP-1 Spawned 8/23/99		Female \# 3458
*	223214623C	H	78	AD		F	Ponded, HP-1 Spawned 8/23/99		Female \# 3497
*	222D727705	H	71	AD		F	Ponded, HP-1 Spawned 8/30/99		Female \# 11
*	222B710343	H	77	AD		F	Ponded, HP-1 Spawned 8/30/99		Female \# 12
*	20441F631A	H	96	AD		M	Ponded, HP-1 Spawned 8/30/99		
*	222D4D005F	H	79	AD		M	Ponded, HP-1 Spawned 8/30/99		
*	223546767D	H	78	AD		M	Ponded, HP-1 Spawned 8/30/99		
*	4153746028	H	78	AD		F	Ponded, HP-1 Spawned 8/30/99		Female \# 18
*	2231455B2E	H	80	AD		M	Ponded, HP-1 Spawned 9/7/99		

Appendix 9. (Continued)

Capture date	PIT-tag code	W/H	Fork length (cm)	Clips	Other tags	Sex M/F	Disposition

* Data for capture date is not available the information shown was recorded at spawning.

Appendix 10. Injuries to chinook returning to Rapid River during 1999.

Nitrogen blister	Body injury	Gill net scar	Gaff wound	Eye damage	Lamprey mark	Fin damage	Body scar	Bite wound
27	31	1	0	1	0	5	0	2

Appendix 11. Rapid River unmarked chinook run timing for 1999

Week ending	Number of fish	Percent of unmarked chinook
May 22	0	0.00
May 29	1	12.50
June 5	0	0.00
June 12	0	0.00
June 19	1	12.50
June 26	0	0.00
July 3	3	37.50
July 10	1	12.50
July 17	0	0.00
July 24	1	12.50
July 31	0	0.00
August 7	1	12.50
August 14	0	0.00
August 21	0	0.00
August 28	0	0.00
Total	8	100.00

Appendix 12. Rapid River unmarked chinook lengths for 1999.

Fork length (cm)	Number of fish	Fork length (cm)	Number of fish
47		88	
48	1	89	1
49		90	
50		91	
51		92	
52		93	
53		94	
54		95	
55		96	
56		97	
57		98	
58		99	
59		100	
60		>100	
61		Total run	8
62			
63			
64		Adult Sex ratio	
65			
66			
67		$1 \text { (} 14.3 \%)$	Females
68		7 (100.0\%)	Total
69	1		
70			
71			
72		Age-class data	
73		1 (12.5\%)	Three-year-old
74		6 (75.0\%)	Four-year-old
75		1 (12.5\%)	Five-year old
76		8 (100.0\%)	Total
77	1		
78	1		
79	1		
80		Age-class criteria	
81		$<59 \mathrm{~cm}=$ Three-year old $59-85 \mathrm{~cm}=$ Four-year-old $>85 \mathrm{~cm}=$ Five-year-old	
82			
83			
84	1		
85	1		
86			

Appendix 13. Rapid River steelhead run timing for 1999.

Week ending	Number of hatchery fish	Percentage of steelhead run	Number of wild fish	Percentage of steelhead run
March 20	0	0.00	0	0.00
March 27	8	20.51	0	0.00
April 3	2	5.13	0	0.00
April 17	3	7.69	0	0.00
April 24	3	7.69	0	0.00
May 1	8	20.51	2.56	
May 8	0	0.00	0	0.00
May 15	4	10.26	2.13	
May 22	1	2.56	10.26	
May 29	0	0.00	1	5.13
June 5	0	0.00	0	2.56
June 12	0	74.35	0.00	25.64
Total	29		10	

WEEKLY TRAP COUNT

Appendix 15. Rapid River steelhead lengths for 1999.

Fork length (cm)	Hatchery		Wild	
	Male	Female	Male	Female
51				
52				
53	1			
54	1	1		
55	2			
56	3			
57	1	1		
58	2	2		
59	3			
60				
61				
62				
63		1		1
64		2		
65		1		
66				
67				
68				
69		1	1	
70				1
71			1	
72				
73				
74			1	
75	1			2
76				
77				1
78		2		
79				1
80				
81		2		
82		1		
83	1			
84				
85				
86			1	
87				
88				
89				
Column total	15	14	4	6
Origin total				
Total run				

Appendix 17. Rapid River bull trout run timing+ for 1999.

Week ending	Number of fish	Percent of bull trout run
May 15	0	0.00
May 22	11	6.75
May 29	2	1.24
June 5 12	3	1.84
June 19	3	1.84
June 26	21	12.88
July 3	3	1.84
July 10	76	46.63
July 17	30	18.40
July 24 31	163	0.91
August 7 14	1	0.61
	100.00	

Appendix 19. Rapid River bull trout lengths for 1999.

Total length (cm)	Number of fish	Total length (cm)	Number of fish
30	0	50	6
31	0	51	4
32	0	52	3
33	1	53	0
34	1	54	4
35	4	55	2
36	7	56	1
37	8	57	0
38	12	58	1
39	10	59	0
40	10	60	0
41	14	61	0
42	13	62	0
43	11	63	1
44	17	64	0
45	14	65	0
46	9	66	0
47	3	67	0
48	5	68	163
49	2	69	
Total			0
			0

Appendix 20. Length-frequency of Bull trout returning to Rapid River during 1999.

Appendix 21. Species trapped in Rapid River during 1999.

Species	Number trapped
Marked chinook	863
Unmarked chinook	8
Steelhead	29
Bull trout	163

Appendix 22. Causes of prespawning mortality at Rapid River Hatchery during 1999.

Cause	Number of fish	Percent of fish held
Unknown	7	0.8
Jaundice	0	0.0
Nitrogen burn	0	0.0
Wounds	0	0.0
Total	7	0.8

Appendix 23. Rapid River Hatchery egg enumeration for 1999.

Total Eggs Taken at Rapid River Hatchery in 1999.

Lot	Spawn date	Eyed	Primary pick	Green	Percent eyed	Average fecundity	Females
1	$8 / 9$	9,806	382	10,188	96.3	5,094	2
2	$8 / 16$	28,767	7,660	36,427	79.0	4,553	8
3	$8 / 19$	66,347	6,974	73,321	90.5	4,583	16
4	$8 / 23$	149,509	8,317	157,826	94.7	4,509	35
5	$8 / 26$	122,977	7,674	130,651	94.1	4,215	31
6	$8 / 30$	83,807	11,579	95,386	87.9	4,336	22
7	$9 / 2$	57,982	5,548	63,530	91.3	4,235	15
8	$9 / 7$	33,512	2,373	35,885	93.4	5,126	7
9	$9 / 13$	1,014	653	1,667	60.8	1,667	1
10	$9 / 15$	2,743	460	3,203	85.6	3,203	1
Total		556,464	51,620	608,084	91.5	4,406	138

This table does not include females or eggs that were culled.

Eggs Received from Lyon's Ferry Hatchery in 1999.

Lot	Date	Eyed	Primary	Green	Percent	Average	Females
1	$9 / 29$	64,885	3,520	68,405	94.9	3,420	20
2	$10 / 6$	128,200	2,405	130,605	98.2	3,437	38
Total		193,085	5,925	199,010	97.0	3,431	58

Eggs transferred from Lyons Ferry Hatchery were not picked prior to shipment. The primary pick numbers here include pick off after arrival at RRFH. The second pick off is expected to be high because the eggs were picked immediately after shocking. Therefore, eye-up percentages are not reliable.

Appendix 24. Rapid River brood stock ELISA results for 1999.

		Positive				
Lot number	Date sampled	Number sampled	<0.099	Low $.1-.249$	Moderate $.250-.399$	High $>.400$
1	$8 / 9 / 99$	2	0	2	0	0
2	$8 / 16 / 99$	12	4	4	0	4
3	$8 / 19 / 99$	16	2	14	3	0
4	$8 / 23 / 99$	36	1	31	0	1
5	$8 / 26 / 99$	31	6	25	0	0
6	$8 / 30 / 99$	23	2	20	0	1
7	$9 / 2 / 99$	15	0	15	0	0
8	$9 / 7 / 99$	7	1	6	0	0
9	$9 / 13 / 99$	1	0	1	0	0
10	$9 / 15 / 99$	1	0	1	0	0
Total		144	16	118	3	6

Appendix 25. Rapid River Hatchery initial raceway loading densities (1/19/00-3/13/00).

Raceway	Inflow $\left(\mathrm{ft}^{3} / \mathrm{sec}\right)$	Number of fish	Weight (lb)	Density Index	Flow Index
2	0.45	103,225	74.2	0.13	0.50
3	0.45	126,729	91.5	0.21	0.81
4	0.45	121,681	87.8	0.16	0.58
5		176,769	127.6	0.23	0.85
6	0.45	189.297	136.6	0.24	0.91
7	0.45				
9					

Inventory data are based on egg enumeration values when final fish were added to each raceway.

Appendix 26. Rapid River Hatchery final raceway loading densities (6/19/00).

Raceway	Inflow $\left(\mathrm{ft}^{3} / \mathrm{sec}\right)$	Number of fish	Weight (lb)	Density Index	Flow Index
2	1.11	102,578	932.5	0.22	0.64
3	1.11	126,075	1115.7	0.28	0.79
4	1.11	120,752	928.9	0.22	0.63
5		175,966	1248.0	0.31	0.87
6	1.11	188,477	1346.3	0.34	0.97
7	1.11				
9					
10					

Inventory data are based on egg enumeration values minus documented mortality; they differ slightly from the number reported marked.

Appendix 27. Rapid River Hatchery initial pond loading densities (6/30/00).

Pond	Inflow $\left(\mathrm{ft}^{3} / \mathrm{sec}\right)$	Number of fish	Weight (lb)	Density Index	Flow Index
$\mathrm{RP}-1 \mathrm{~A}$					
$\mathrm{RP}-1 \mathrm{~B}$					
$\mathrm{RP}-2 \mathrm{~A}$	5.10	393,314	$2,815.4$	0.05	0.48
$\mathrm{RP}-2 \mathrm{~B}$		344,928	$2,986.4$	0.04	0.44
$\mathrm{RP}-2 \mathrm{C}$	5.40				

Inventory data are based on reported number marked, which shows an increase of 3.4\% from hatchery inventory based on egg enumeration.

Appendix 28. Rapid River Hatchery pond loading densities at release (3/15/01).

Pond	Inflow $\left(\mathrm{ft}^{3} / \mathrm{sec}\right)$	Number of fish	Weight (lb)	Density Index	Flow Index
RP-1A					
RP-1B					
RP-2A	7.42	337,410	$17,040.9$	0.13	0.97
RP-2B	7.42	54,986	$2,777.1$	0.02	0.16
RP-2C					
RP-2D	7.42	344,205	$19,272.4$	0.16	1.13

Appendix 29. Feed for brood year 1999 at Rapid River Hatchery.

Product		${ }^{\text {a }}$ Amount used	Unit price	Total cost
Type/size	Additives			
BioDiet:				
No. 2 Starter		186.3 kg	2.2300	\$ 415.45
No. 3 Starter		219.5 kg	2.2300	\$ 489.49
No. 2 \& No. 3	Bio Flake MC	2.7 kg	0.0000	\$ 0.00
1.0 mm Grower		439.1 kg	1.7500	\$ 768.43
1.3 mm Grower		119.7 kg	1.7100	\$ 204.69
1.3 mm Grower	Aquamycin-100	798.3 kg	3.4440	\$2,749.35
1.5 mm Grower		1676.5 kg	1.5900	\$2,665.64
2.0 mm Grower		2794.1 kg	1.4900	\$4,163.21

BioMoist:

1.5 mm Grower		${ }^{\mathrm{b}}$ EIBS PAC	0.0 lb		0.6600
2.0 mm Grower	EIBS PAC	4500.0 lb		0.7352	$\$ 3,308.40$
2.5 mm Grower	EIBS PAC	7250.0 lb		0.6452	$\$ 4,677.70$
3.0 mm Grower		7000.0 lb	0.5450	$\$ 3,815.00$	
3.0 mm Grower	Aquamycin-100				
	EIBS PAC	9975.0 lb		1.8730	$\$ 18,683.18$
3.0 mm Feed	EIBS PAC	12000.0 lb		0.4950	$\$ 5,940.00$
${ }^{\text {c }}$ Total		$54,471.0 \mathrm{lb}$		$\$ 36,424.28$	

${ }^{\text {a }}$ Feed units are given in kg or lb . as provided by manufacturer
${ }^{\mathrm{b}}$ EIBS PAC $=5 \times$ C and B12, and $10 \times$ Folic Acid.
${ }^{\mathrm{c}}$ Total includes 51,350 lb fed prior to the start of release and 3,121 fed after the start of release.
The size of fish at release and overall feed conversion are based on $51,350 \mathrm{lb}$ of feed.

Appendix 30: Eagle Fish Health Laboratory inspection results for brood year 1999

Appendix 31. Preliberation organosomatic index for brood year 1999.

Hematology						
	Hematocrit			Serum protein		
Date	${ }^{2}$ Mean	${ }^{\text {a }}$ SD	${ }^{\text {b }} \mathrm{CF}$	${ }^{2}$ Mean	${ }^{\text {b }}$ SD	${ }^{\text {c }} \mathrm{CF}$
03/14/01	42.53	5.05	0.1187	7.84	1.099	1.402

Combined autopsy summary

Eyes		Gills		Pseudobranchs		Thymus		Mesen. fat		Spleen		Hind gut		Kidney		Liver		Bile	
N	20	N	20	N	20	0	20	0	0	B	0	0	20	N	20	A	0	0	0
B1	0	F	0	S	0	1	0	1	0	R	20	1	0	S	0	B	14	1	0
B2	0	C	0	L	0	2	0	2	1	G	0	2	0	M	0	C	6	2	0
E1	0	M	0	S\&L	0			3	9	ON	0			G	0	D	0	3	0
E2	0	P	0	I	0			4	10	E	0			U	0	E	0		
H1	0	OT	0	OT	0					OT	0			T	0	F	0		
H2	0			O	0											OT	0		
M1	0																		
OT	0																		

Summary of normals									
20	20	20	20	20	20	20	20	20	20

$\mathrm{N}=$ normal
OT = other
Thymus: $0=$ no hemorrhage
Mesenteric fat: $0=$ none, $1=<50 \%$ coverage, $2=50 \%, 3=>50 \%, 4=100 \%$
Spleen: $\mathrm{R}=$ red, $\mathrm{E}=$ enlarged (EIBS enlarges spleens)
Hind gut: $0=$ no inflammation
Liver: B = pail red
Bile: $0=$ yellow bile < full bladder

Appendix 32. Rapid River Hatchery marking summary for brood year 1999

Coded wire tag releases						
Release site	Date released	Number of fish marked	Release group mark code	Clip	Purpose	Pond
Rapid River	$3 / 15 /-4 / 25 / 01$	69,603	$10-36-10$	AD	US-Canada	2D
Rapid River	$3 / 15 /-4 / 25 / 01$	69,100	$10-36-11$	AD	US-Canada	2D
Rapid River	$3 / 15 /-4 / 25 / 01$	67,030	$10-36-12$	AD	US-Canada	2D
Rapid River	$3 / 15 /-4 / 25 / 01$	70,454	$10-36-13$	AD	US-Canada	2D
Rapid River	$3 / 15 /-4 / 25 / 01$	69,101	$10-36-14$	AD	US-Canada	2D
Total		$\mathbf{3 4 5 , 2 8 8}$				

PIT tag releases

Release site	Date released	bumber of PIT-tagged fish	Release group mark code	Clip	Purpose	Pond
Rapid River	$3 / 15-4 / 25 / 01$	55,092	AD only	AD	Hatchery PIT tag study and FPC	2B

${ }^{5}$ See the Annual Release Summary of Marked Salmon and Steelhead (unpublished Department document) for estimated numbers of marked fish released.

Appendix 33. Smolts released from Rapid River Hatchery in 2001 (brood year 1999).

Release site date	Release method		Number Released	Weight (b)
Rapid River	Volitional release by pond:			
3/15-4/17/00		1A	0	0
		1B	0	0
		2A	334,036	16,871
		2B	54,436	2,749
		2C	0	0
		2D	340,763	19,079
	Volitional release Subtotal		729,235	38,699 lb
4/03-4/25/00	Smolts flushed by pond:	1A	0	0
		1B	0	0
		2A	3,374	170
		2B	550	28
		2C	0	0
		2D	3,442	193
	Pond flush subtotal		7,366	391 lb
Site total	Site total		736,601	$39,090 \mathrm{lb}$
	Hatchery total		736,601	39,090 lb

Appendix 34. Survival from eggs to smolts at Rapid River Hatchery for brood year 1999.

${ }^{\text {a }}$ Green eggs	Eyed egg number	${ }^{\text {b }}$ Percent survival	Swimup	${ }^{\text {c }}$ Percent survival	${ }^{\mathrm{d}}$ Marked number	Released smolts	${ }^{\text {e }}$ Percent survival
807,094	749,549	92.9	717,176	88.9	739,042	736,601	99.7

${ }^{\text {a }}$ Green eggs retained by Rapid River Hatchery including eggs received from Lyon's Ferry Hatchery.
${ }^{\mathrm{b}}$ Percent eye-up of eggs retained at Rapid River Hatchery.
${ }^{\text {c }}$ Percentage of green eggs retained at Rapid River Hatchery that survived to swim-up.
${ }^{\mathrm{d}}$ The reported number marked was 3.4% more than hatchery inventory at the time of marking.
${ }^{\text {e }}$ Percent survival from marking to release was 99.7%. Percent survival from adjusted swim-up to release was 99.1%.

Appendix 35. Cost of production at Rapid River Hatchery for brood year 1999.

${ }^{\text {a }}$ The total represents the total cost incurred by IPC from 9/1/99 through 3/30/01. This amount may exceed cost associated with production of Brood Year 1998 due to overlap in the brood year rearing cycle (see discussion in the Cost of Production section). These costs include funds provided to the Department by IPC, as well as internal costs incurred by IPC. It does not include capital outlay expenditures.

Appendix 36. Returns to Rapid River Hatchery from 1964 to 2000.

Return year	Snake R. return (adults)	Rapid R. return (adults)	Rapid R. return (jacks)	Percent prespawning mortality	Females spawned	Eggs/ female	Number of eggs taken
1964	349			16	182	4,874	887,000
1965	408			21	133	4,541	604,000
1966	1,5111			18	621	3,697	2,296,000
1967	974	1,039		11	581	3,537	2,055,000
1968	351	3,416	740	2	1,809	3,671	6,540,000
1969	672	2,817	1,043	8	1,415	3,655	5,151,697
1970		6,470	887	10	3,520	4,136	14,560,280
1971		3,357	1,754	19	1,722	3,507	6,038,785
1972		12,310	943	15	3,825	3,941	15,072,604
1973		17,054	286	37	3,454	3,912	13,510,465
1974		3,457	538	27	1,756	3,924	6,890,186
1975		4,428	573	7	2,184	3,894	8,503,606
1976		6,342	1,765	15	3,055	3,762	11,492,878
1977		7,767	437	11	3,781	3,745	14,160,330
1978		5,735	34	21	2,350	4,266	10,026,888
1979		3,054	350	31	1,141	4,950	5,648,722
1980		1,528	432	30	543	3,235	1,756,827
1981		3,087	176	7	1,666	3,675	6,122,273
1982		3,646	30	11	1,883	3,973	7,482,330
1983		1,864	94	15	859	4,015	3,449,471
1984		1,705	651	7	821	3,807	3,125,911
1985	673	6,376	351	8	2,962	3,741	11,535,461
1986	360	6,546	177	34	2,451	4,355	10,673,138
1987	534	3,808	210	30	1,133	4,379	5,656,145
1988	381	3,608	172	19	1,645	4,879	7,905,702
1989	86	2,372	428	11	1,082	4,139	4,478,045
1990		2,566	40	13	1,063	3,967	4,217,103
1991		1,675	238	10	657	3,886	2,553,218
1992	912	2,370	96	24	1,177	3,988	4,534,404
1993	411	4,451	17	17	1,737	4,090	6,404,312
1994	29	261	4	21	116	4,226	490,249
1995	35	70	59	7	35	3,771	132,002
1996	58	1,412	751	6	329	3,561	1,171,610
1997	788	10,510	10	10	1,138	3,930	4,472,573
1998	60	1,584	7	16	723	4,715	3,409,130
1999	22	224	639	0.8	138	4,406	608,084
2000	967	3,098	1,701	4.1	1226	3,900	4,780,850

From 1985 on, total eggs taken includes those from Snake River adults.

Appendix 37. Returns to Rapid River Hatchery by brood year.

Brood year	Year Released	Release into Rapid River	3-year-olds	Year returned	4-year-olds	Year returned	5-year-olds	Year returned	Returns to Rapid River from release	\% Return from release
1964	1966	588,000	1,309	1967	3,422	1968	197	1969	4,928	0.84
1965	1967	479,267	740	1968	2,620	1969	874	1970	4,234	0.88
1966	1968	1,460,150	1,043	1969	5,596	1970	364	1971	7,003	0.48
1967	1969	900,192	887	1970	2,992	1971	1,544	1972	5,423	0.60
1968	1970	3,172,000	1,754	1971	10,766	1972	4,403	1973	16,923	0.53
1969	1971	2,718,720	943	1972	12,654	1973	1,759	1974	15,356	0.56
1970	1972	2,809,200	285	1973	1,698	1974	386	1975	2,369	0.08
1971	1973	2,908,425	538	1974	4,206	1975	1,120	1976	5,864	0.20
1972	1974	2,707,917	573	1975	5,222	1976	634	1977	6,429	0.24
1973	1975	3,373,700	1,765	1976	7,110	1977	1,845	1978	10,720	0.32
1974	1976	3,358,940	437	1977	3,890	1978	2,413	1979	6,740	0.20
1975	1977	2,921,172	34	1978	598	1979	46	1980	678	0.02
1976	1978	2,412,678	350	1979	1,482	1980	146	1981	1,978	0.08
1977	1979	2,866,993	432	1980	3,068	1981	557	1982	4,057	0.14
1978	1980	2,604,823	176	1981	3,089	1982	1,206	1983	4,471	0.17
1979	1981	2,372,607	30	1982	838	1983	356	1984	1,224	0.05
1980	1982	1,476,766	94	1983	1,349	1984	199	1985	1,642	0.11
1981	1983	2,998,103	651	1984	6,177	1985	1,456	1986	8,284	0.28
1982	1984	3,246,197	351	1985	5,090	1986	1,155	1987	6,596	0.20
1983	1985	2,491,238	177	1986	2,444	1987	1,557	1988	4,178	0.17
1984	1986	1,594,688	210	1987	2,051	1988	379	1989	2,640	0.17
1985	1987	2,836,400	172	1988	1,933	1989	135	1990	2,240	0.08
1986	1988	2,630,200	428	1989	2,431	1990	421	1991	3,280	0.12
1987	1989	2,319,500	40	1990	1,254	1991	161	1992	1,455	0.06
1988	1990	2,520,400	238	1991	2,209	1992	1,905	1993	4,352	0.17
1989	1991	2,564,900	96	1992	2,546	1993	122	1994	2,764	0.11
1990	1992	2,615,500	17	1993	139	1994	9	1995	165	0.01
1991	1993	2,060,300	4	1994	61	1995	2	1996	67	0.003
1992	1994	2,547,624	59	1995	659	1996	177	1997	895	0.04
1993	1995	2,786,919	751	1996	10,333	1997	1,322	1998	12,406	0.45
1994	1996	379,167	10	1997	262	1998	72	1999	344	0.09

Appendix 37. (Continued).

	Year Released	Release into Rapid River	3-year-olds	Year returned	4-year-olds	Year returned	Returns to \% Return from Rapid River
	1997	85,840	7	1998	152	1999	12
5elease							

Returns to Rapid River are hatchery returns and do not account for harvest.

Appendix 38. Average feed and growth data for Rapid River Hatchery.

Month	Average Water Temperature $\left({ }^{\circ} \mathrm{F}\right)$	Density Index	Flow Index	${ }^{\mathrm{a}}$ Feed conv.	Hatchery constant	${ }^{\text {b }}$ Daily length increase (in)	${ }^{\text {b }}$ Monthly length increase (in)		Percent Body Weight fed	Number Feedings per day	Average \#/lb at end of month	Average length at end of month (in)
FEB	38	N.A.	N.A.	N.A.	1.98	0.0024	0.07	2.7	1.42	8	1109	1.50
MAR	41	0.24	0.59	1.07	2.26	0.0070	0.20	2.8	1.89	8	809	1.64
APR	44	0.29	0.64	1.02	3.23	0.0105	0.34	3.1	2.40	8	439	1.95
MAY	46	0.29	0.74	1.00	4.54	0.0151	0.29	3.1	2.30	8	271	2.29
JUN	49	0.0	0.69	1.20	7.10	0.0297	0.59	3.1	2.93	4	136	2.87
JUL	54	0.09	0.83	1.59	7.36	0.0155	0.47	3.6	2.75	4	79	3.43
AUG	55	0.12	1.33	1.59	7.82	0.0164	0.50	3.5	2.70	5	46	3.86
SEP	51	0.15	1.57	1.70	8.66	0.0170	0.51	3.5	2.00	5	36	4.31
OCT	46	0.16	1.69	1.71	5.03	0.0098	0.30	3.5	1.37	3	30	4.60
NOV	51	0.17	1.81	2.22	1.54	0.0023	0.07	3.5	0.47	2	28	4.67
DEC	38	0.17	1.88	4.46	2.12	0.0016	0.03	3.4	0.21	1	30	4.67
JAN	37	0.18	1.89	2.83	1.15	0.0013	0.03	3.4	0.21	1	29	4.69
FEB	38	0.18	2.01	1.24	1.47	0.0040	0.12	3.2	0.53	2	26	4.95
MAR	41	0.19	1.97	1.55	3.47	0.0074	0.22	3.2	0.92	2	22	5.19

[^1]Appendix 39. Release and transfer summary for Rapid River Hatchery for 1964 to 2000.

Brood year	No. eggs taken	Egg or fry plants and site			Smolt pla	nts and site	Size (g/fish)
1964	887,000	None			588,000	Rapid River	20.1
1995	60,400	None			479,267	Rapid River	19.6
1966	2,296,000	None			1,460,150	Rapid River	18.1
1967	2,055,000	None			900,192	Rapid River	18.9
1968	6,540,000	757,376	eggs	Clearwater H Channel	3,172,000	Rapid River	22.6
1969	5,171,697	497,000	eggs	Dworshak NFH to start Kooskia NFH.	2,718,720	Rapid River	21.6
1970	14,560,280	4,417,454	eggs	Sweetwater Eye Stat.	2,809,200	Rapid River	23.3
		2,224	eggs	Kooskia NFH.	91,800	Lochsa River	23.8
		526,516	eggs	Hayden Cr. Hatchery			
		2,473,983	eggs	Clearwater H Channel			
		4,607,736	eggs	Rapid River Hatchery			
		200,520	fry	Lemhi River			
		353,970	fry	Decker Pond			
		100,000	fry	Sandpoint Hatchery			
1971	6,038,785	600,000	eggs	Hayden Cr. Hatchery	2,908,425	Rapid River	26.7
		53,562	fry	Lemhi River	197,303	SF Clearwater	
		104,300	fry	Red River			
		29,800	fry	Ten Mile Creek			
		44,700	fry	American River			
		14,900	fry	Papoose Creek			
		59,600	fry	Brushy Creek			
		44,700	fry	Fish Creek			
		14,900	fry	Post Office Creek			
		44,700	fry	Squaw Creek (Lochsa)			
		61,500	fry	Lochsa River			
		60,000	fry	Ten Mile Creek			
		$200,000$	fry	Sandpoint Hatchery			
		401,305	fry	Decker Pond			
1972	15,072,604	5,256,662	eggs		2,707,917	Rapid River	25.9
		$3,012,358$	eggs	Hayden Creek Hatchery			
		1,293,592	eggs	Red River H Channel			
1973	13,510,464	3,915,900	eggs	Sweetwater Eye Stat.	3,373,700	Rapid River	30.6
		1,295,424	eggs	Hayden Creek Hatchery	117,000	SF Clearwater	
		104,760	eggs	Hagerman Hatchery			
		502,200	eggs	Crooked R. H Channel			
		702,000	eggs	Kooskia NFH			
		806,400	eggs	Hayden Creek Hatchery			
		504,000	eggs	Minnesota walleye trade			
		210,734	fry	Sandpoint Hatchery			
		206,360	fry	Kooskia NFH			
		88,480	fry	Ten Mile Creek.			
		18,200	fry	Newsome Creek			
		633,000	fry	Lemhi River			
		10,428	fry	Capehorn Creek			
1974	6,890,186	809,400	eggs	Hayden Creek Hatchery	3,358,940	Rapid River	24.7
		407,012	eggs	Indian Creek	205,700	SF Clearwater	
		203,500	fry	Sandpoint Hatchery			
		21,840	fry	Capehorn Creek			
		59,962	fry	Red River			
		30,750	fry	Newsome Creek			
		10,250	fry	Ten Mile Creek			
		1,140,300	fry	Lemhi River			

Appendix 39. (Continued).

1975	8,503,606	2,363,200	eggs	Sweetwater Eye Stat.	2,921,172	Rapid River	28.5
		252,200	eggs	Mullan Hatchery	249,750	SF Clearwater	
		255,000	eggs	Hayden Creek Hatchery			
		280,659	eggs	Indian Creek H Chan.			
		4,906,492	eggs	Rapid River Hatchery			
		34,000	fry	Ten Mile Creek			
		156,000	fry	Lemhi River			
		65,960	fry	SF Clearwater River			
		412,800	fry	Decker Pond			
		209,950	fry	Sandpoint Hatchery			
		36,143	fry	Bear Valley Creek			
1976	11,492,878	1,161,608	eggs	Mullan Hatchery	2,413,678	Rapid River	28.9
		2,937,994	eggs	Sweetwater Eye Stat.			
		261,900	eggs	Hayden Creek Hatchery			
		261,900	eggs	Sandpoint Hatchery			
		1,267,208	eggs	Mackay Hatchery			
		47,008	fry	Univ. of Idaho			
		3,111,850	fry	Mackay Hatchery			
		104,500	fry	Lolo Creek			
		501,600	fry	Red River Pond			
		80,600	fry	SF Clearwater			
1977	14,160,330	2,633,400	eggs	Sweetwater Eye Stat.	2,866,993	Rapid River	30.2
		2,287,800	eggs	Kooskia NFH	156,362	White Sand Cr.	
		2,689,000	eggs	Mullan Hatchery	44,373	Newsome Creek	
		288,000	eggs	Hayden Creek Hatchery			
		20,700	eggs	Univ. of Idaho			
		1,007,340	eggs	Crooked River H Chan.			
		723,000	fry	Mackay Hatchery			
		50,800	fry	Decker Pond			
		200,025	fry	Red River Pond			
		265,600	fry	Lemhi River			
1978	10,026,888	767,322	eggs	Hayden Creek Hatchery	2,604,823	Rapid River	30.2
		970,728	eggs	Mackay Hatchery	57,440	White Sand Cr.	
		1,540,282	eggs	Sweetwater Eye Stat.			
		706,936	eggs	Dworshak NFH			
		38,160	eggs	Univ. Of Idaho			
		10,864	eggs	U of I Hayden Cr.			
		1,250,010	eggs	Crooked River H Chan.			
		249,696	eggs	Sweetwater Eye Stat.			
		232,500	fry	Red River Pond			
		10,000	fry	Ten Mile Creek			
1979	5,646,722	806,400	eggs	Hayden Creek Hatchery	2,372,607	Rapid River	25.3
		330,880	eggs	Dworshak NFH	1,001,700	Snake River	21.6
		293,249	fry	Red River Pond			
1980	1,756,827	None			1,473,733	Rapid River	16.2
1981	6,122,273	608,384	eggs	Pahsimeroi Hatchery	2,998,103	Rapid River	20.6
		256,608	eggs	Oxbow Hatchery	250,020	Snake River	16.8
		449,280	eggs	Dworshak NFH			
1982	7,420,450	493,346	eggs	Looking Glass (Ore)	3,246,197	Rapid River	22.7
		1,332,200	eggs	Pahsimeroi Hatchery	500,850	Snake River	16.8
		375,028	eggs	Dworshak NFH			
		125,055	eggs	Hagerman NFH			
		306,000	fry	Red River Pond			

Appendix 39. (Continued).

Brood year	No. eggs taken	Egg or fry plants and site			Smolt plants and site		Fish/ pound
1983	3,449,471	None			2,491,238	Rapid River	19.7
					437,360	Snake River	16.8
1984	3,125,911	152,000	fry	Red River	159,688	Rapid River	20.6
					140,000	Snake River	22.7
					136,000	Red River	15.1
1985	11,535,461	497,520	eggs	Oregon	2,630,200	Rapid River	20.2
		3,668,000	eggs	Dworshak NFH	103,000	Snake River	14.6
		2,450,907	eggs	Sawtooth Hatchery			
		100,590	fry	Boulder Creek			
		349,650	fry	Crooked River			
		200,158	fry	Eldorado Creek			
		55,123	fry	Hopeful Creek			
		144,443	fry	Crooked Fork Creek			
		70,282	fry	White Sand Creek			
		49,437	fry	Ten Mile Creek			
		102,282	fry	Newsome Creek			
		115,352	fry	Brushy Fork Creek			
1986	10,673,138	2,368,400	eggs	Dworshak NFH	2,630,200	Rapid River	23.9
		712,905	eggs	Sawtooth Hatchery	400,600	Snake River	22.9
		348,600	fry	Crooked Fork Creek			
		202,400	fry	White Sand Creek			
		98,000	fry	Big Flat Creek			
		238,900	fry	Red River Pond			
1987	5,656,145	30,000	fry	Little Salmon River	2,319,500	Rapid River	20.6
		103,800	fry	Lolo Creek	500,000	Snake River	22.7
		137,800	fry	Eldorado Creek			
		62,200	fry	Crooked Fork Creek			
		108,300	fry	Hopeful Creek			
		72,200	fry	White Sand Creek			
		19,500	fry	Big Flat Creek			
		113,800	fry	American River			
		112,100	fry	Newsome Creek			
		100,100	fry	Meadow Creek			
		200,100	fry	Crooked River			
		50,100	fry	Red River			
		50,100	fry	Yankee Fork			
		202,000	fry	Brushy Fork			
		150,100	fry	Ten Mile Creek			
		100,200	fry	White Sand Creek			
1988	7,881,379	1,475,677	eggs	Oregon Fish and Game	2,520,400	Rapid River	17.4
		149,570	fry	Little Salmon River	250,000	Little Salmon	16.3
		100,278	fry	Ten Mile Creek	551,200	Snake river	15.1
		149,570	fry	Little Salmon River			
		100,278	fry	Ten Mile Creek			
		101,062	fry	Crooked River			
		100,862	fry	Crooked River			
		100,628	fry	Newsome Creek			
		100,299	fry	Boulder Creek			
		100,342	fry	Boulder Creek			
		100,097	fry	Newsome Creek			
		195,398	fry	Brushy Fork			
		99,919	fry	White Sand Creek			

Appendix 39. (Continued).

Brood year	No. eggs taken	Egg or fry plants and site			Smolt plants and site		$\begin{gathered} \text { Size } \\ \text { (g/fish) } \end{gathered}$
1988	3,925,585	100,148	fry	White Sand Creek			
		99,401	fry	American River			
		51,369	fry	American River			
		39,163	fry	Meadow Creek			
1989		211,509	fry	Crooked River	2,564,900	Rapid River	18.7
		548,876	fry	Sawtooth Hatchery	100,100	Little Salmon	20.2
					500,500	Snake River	20.2
1990	4,271,103	200,000	eggs	Looking Glass Hatch.	2,615,500	Rapid River	22.3
		403,400	fry	Sawtooth Hatchery	500,500	Snake River	22.3
1991	2,553,218	3,050	fry	Hayden Creek Hatchery	2,060,300	Rapid River	18.4
		10,126	fry	Squaw Creek	200,300	Snake River	16.9
		90,125	fry	White Sand Creek			
1992	4,534,404	92,897	eggs	Dworshak Hatchery	2,547,624	Rapid River	22.2
					380,600	Snake River	22.1
1993	6,404,312	2,176,157	eggs	Clearwater Hatchery	2,786,919	Rapid River	24.5
					499,536	Snake River	23.7
1994	490,249	58,791	eggs	Clearwater Hatchery	379,167	Rapid River	27.0
1995	132,002	16,402	eggs	Clearwater Hatchery	85,840	Rapid River	22.1
1996	1,171,610	168,754	eggs	Clearwater Hatchery	896,170	Rapid River	22.3
1997	4,472,573	1,015,496	eggs	Clearwater Hatchery	2,847,283	Rapid River	25.3
					200,000	Little Salmon	20.8
					300,000	Snake River	20.8
1998	3,409,130	510,848	eggs	Clearwater Hatchery	2,462,354	Rapid River	19.2
1999	606,084						
	199,010	Eggs received form Lyon's Ferry Hatchery			736,601	Rapid River	18.8
2000	e,780,850	911,919	eggs	Clearwater Hatchery			

Submitted by:

Bradford W. Dredge
Fish Hatchery Manager II

Ralph Steiner
Assistant Fish Hatchery Manager

Nicola A. Johnson
Fish Culturist

Approved by:

Virgil K. Moore, Chief
Fisheries Bureau

Tom Rogers
Anadromous Fish Hatcheries Supervisor

[^0]: * Total adult Rapid River returns

[^1]: ${ }^{\text {a/ }}$ Feed conversion is expressed as actual feed weight over weight gain.
 ${ }^{\mathrm{b}}$ Growth data may vary during periods of high water.

