MULTISTATE HIGH MOUNTAIN LAKE SUMMIT

Grant # F-73-R-29

ANNUAL REPORT
July 1, 2006—June 30, 2007

Edited by:
Kevin A. Meyer, Principal Fisheries Research Biologist
Daniel J. Schill, Fisheries Research Manager

IDFG Report Number 07-55
July 2007
MULTISTATE HIGH MOUNTAIN LAKE SUMMIT

Project 2: Hatchery Trout Evaluations
Subproject #1: Multi-state High Mountain Lake Summary

2006 Annual Report

Edited by
Kevin A. Meyer
and
Daniel J. Schill

Idaho Department of Fish and Game
600 South Walnut Street
P.O. Box 25
Boise, ID 83707

IDFG Report Number 07-55
July 2007
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY OF A MULTISTATE HIGH MOUNTAIN LAKE SUMMIT</td>
<td>1</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>OBJECTIVES OF THE NOVEMBER 2007 MEETING</td>
<td>3</td>
</tr>
<tr>
<td>PRESENT MANAGEMENT OF HIGH LAKES IN THE WESTERN UNITED STATES</td>
<td>3</td>
</tr>
<tr>
<td>State of California</td>
<td>3</td>
</tr>
<tr>
<td>Alpine Lake Management</td>
<td>3</td>
</tr>
<tr>
<td>Fish Stocking Guidelines</td>
<td>6</td>
</tr>
<tr>
<td>Fishless Lakes Management</td>
<td>6</td>
</tr>
<tr>
<td>State of Idaho</td>
<td>6</td>
</tr>
<tr>
<td>Alpine Lake Management</td>
<td>6</td>
</tr>
<tr>
<td>Fish Stocking Guidelines</td>
<td>8</td>
</tr>
<tr>
<td>Use of Sterile Fish</td>
<td>8</td>
</tr>
<tr>
<td>Angler Use</td>
<td>8</td>
</tr>
<tr>
<td>Fishless Lakes Management</td>
<td>8</td>
</tr>
<tr>
<td>State of Montana</td>
<td>9</td>
</tr>
<tr>
<td>Fish Stocking Guidelines</td>
<td>9</td>
</tr>
<tr>
<td>Fishless Lakes Management</td>
<td>10</td>
</tr>
<tr>
<td>State of Nevada</td>
<td>10</td>
</tr>
<tr>
<td>Fish Stocking Guidelines</td>
<td>10</td>
</tr>
<tr>
<td>Fishless Lakes Management</td>
<td>11</td>
</tr>
<tr>
<td>State of New Mexico</td>
<td>11</td>
</tr>
<tr>
<td>Fish Stocking Guidelines</td>
<td>11</td>
</tr>
<tr>
<td>Angler Use</td>
<td>12</td>
</tr>
<tr>
<td>State of Oregon</td>
<td>12</td>
</tr>
<tr>
<td>Fish Stocking History and Technology</td>
<td>12</td>
</tr>
<tr>
<td>1964 Wilderness Act, States Authority to Manage Fish and Wildlife</td>
<td>13</td>
</tr>
<tr>
<td>USFS Coordination and Conservation Issues</td>
<td>13</td>
</tr>
<tr>
<td>High Lakes Fish Stocking Into the Future</td>
<td>13</td>
</tr>
<tr>
<td>State of Washington</td>
<td>14</td>
</tr>
<tr>
<td>Field Sampling Guidelines</td>
<td>14</td>
</tr>
<tr>
<td>Fish Stocking Guidelines</td>
<td>14</td>
</tr>
<tr>
<td>Fish Species and Stock Selection Guidelines</td>
<td>14</td>
</tr>
<tr>
<td>Angler Use</td>
<td>14</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>15</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>17</td>
</tr>
<tr>
<td>LITERATURE CITED</td>
<td>18</td>
</tr>
</tbody>
</table>

LIST OF TABLES

Table 1. Summary of high mountain lakes (HMLs) and stocking guidelines for several western states. 19

LIST OF APPENDICES

Appendix A. 20
SUMMARY OF A MULTISTATE HIGH MOUNTAIN LAKE SUMMIT

ABSTRACT

Fisheries management of high mountain lakes (HMLs), most of which were historically fishless, has come under ever-increasing scrutiny due to the ecological impacts of introduced fish (usually salmonids) on native species in these alpine settings. In November 2006, the Idaho Department of Fish and Game organized a High Mountain Lake Summit of fisheries managers and program coordinators from around the western United States. At this summit, past experience, current direction, and future courses of action in HML management were presented and discussed.

Historically, HMLs in the western United States were managed to provide diverse angling opportunities, and as a result were often stocked with nonnative salmonids, or salmonids native to downstream reaches but not to the lake itself. More recently, states are managing HMLs under a more dichotomous approach, that of balancing the impacts that introduced salmonids can have on native species in HMLs, while maintaining the fishing opportunities that the public currently desires. Most states now manage for a certain amount of fishless lakes, and removal of nonnative salmonids from some lakes is occurring with the use of chemicals, netting, and sterile fish predators. Sterile hatchery salmonids are being stocked to avoid potential genetic concerns with native salmonids in downstream reaches, and for the most part brook trout Salvelinus fontinalis are no longer stocked in HMLs in the west. Of the nearly 29,000 HMLs located within the seven states represented at the meeting, salmonids are present in about 6,900 lakes (24%), and about 2,750 HMLs (10%) are currently being stocked with fish. These estimates are lower than those of previous summaries, largely because of differences in the definition of what constitutes a HML, but also because nearly all western states have in recent years reduced or eliminated exotic introductions, reduced the number of lakes being stocked, terminated stocking where natural reproduction occurs, and preserved or augmented the number of fishless lakes. The continuation and refinement of such management actions should help insure that HMLs continue to provide quality fishing opportunities while protecting native aquatic biota for future generations.

Edited by:

Kevin A. Meyer
Principal Fisheries Research Biologist

Daniel J. Schill
Fisheries Research Manager
INTRODUCTION

Most high mountain lakes (HMLs) of the western United States were formed during the late Pleistocene epoch by glaciers, which carved basins in the rock and formed moraines that function as natural dams (and barriers). These barriers prevented fish from naturally colonizing HMLs when the glaciers melted. Consequently, it was not until the west was settled by migrants from the eastern United States in the 1800s, and the settlers began stocking HMLs with a variety of salmonids, that anglers began to visit these areas to catch fish. Initial introductions typically were made by miners, cattlemen, and sportsmen groups such as the Sierra Club, followed by erratic governmental management of HML systems (Pister 2001). Fish management of HMLs was thus born.

As time has passed, fisheries management in HMLs has come under ever-increasing scrutiny (Bahls 1992; Pister 2001; Dunham et al. 2003; Wiley 2003). This scrutiny stems largely from the fact that, in the past few decades, a growing body of evidence has demonstrated that the introduction of salmonids into historically fishless HMLs typically results in reduced numbers of invertebrates, amphibians, and other native species that previously did not evolve in sympatry with salmonids (see Dunham et al. 2003 for review). However, state biologists are typically charged with managing HMLs for the benefit of all citizens, many of whom have a strong desire for angling opportunities in alpine settings (e.g., IDFG 2007). For fisheries managers, the dichotomy of providing fish opportunities in HMLs while protecting native species has become an ever-more difficult balancing act, resulting in recent changes in the management of HMLs. State managers of HMLs recognize that the ability to maintain quality fisheries in HMLs in the future will be influenced by our knowledge of HML ecosystems and how fish stocking programs influence these ecosystems.

Idaho has previously conducted two summaries of HML management in the western United States. A meeting was held almost 30 years ago, at which management of HMLs in Idaho and other western state was reviewed with the similar goal of using the knowledge gained from that review to improve understanding of HML ecosystems and programs and benefit HML management. Subsequently, a report was written by Jerry Mallet and Herb Pollard in 1976 (Mallet and Pollard 1976), but it was never published as an agency report; it appears here as Appendix A to preserve their narration. Twenty years later, DerHovanisian (1997) summarized HML management in the western United States, focusing on strategies for HML management and providing recommendations for future management.

Notwithstanding these previous summaries, the western United States has cumulatively made great advancements and changes in the management of HMLs in recent years. This report is an attempt to summarize some of those changes. This information was exchanged at a High Mountain Lake Summit meeting at the Billy Creek Patrol Station near Lewiston, Idaho, in November 2006. States in attendance included Washington, Oregon, California, Nevada, New Mexico, Montana, and Idaho. The summit involved 1-2 presentations by representatives from each state in attendance, as well as a discussion session for any remaining as-yet uncovered topics. In addition, management plans, research results, and state policy directives were also shared in a variety of formats.

This report attempts to summarize the results of the above efforts. However, this report in no way completely summarizes HML management in each respective state, nor does it constitute the entire breadth of each state’s HML policy. Rather, we cover here only what was discussed or summarized at the meeting. Because the information presented here is solely
OBJECTIVES OF THE NOVEMBER 2006 MEETING

1.) Identify each state’s stocking guidelines for HMLs, how they were developed, and how they have changed in the last 10-20 years.

2.) Identify each state’s current policies regarding HML fish stocking, fishless lakes, genetic risks, use of sterile fish, herpetological guidelines, ESA issues, and other related factors influencing management of HMLs.

3.) Identify current or future threats to the management of HML fisheries, and develop proactive steps to maintain these fisheries.

PRESENT MANAGEMENT OF HIGH LAKES IN THE WESTERN UNITED STATES

State of California
Curtis Milliron and Roger Bloom

Alpine Lake Management

High country fisheries management in California has evolved toward an ecosystem approach that incorporates recreational interests with a mandate and responsibility to manage for native fauna. Nearly all HMLs in the Sierra Nevada were historically fishless, but certainly not barren. Native amphibians were plentiful, with mountain yellow-legged frogs *Rana muscosa* believed to be abundant in most basins with perennial lakes. Now, this amphibian is in jeopardy of extinction due to at least three contributing factors: disease, pesticide contaminant drift, and the introduction of nonnative fish. The California Department of Fish and Game (CDFG) is redirecting some management effort to improving conditions for native fauna through the development and implementation of fisheries and aquatic biodiversity management plans.

A massive resource assessment project has surveyed over 80 percent of Sierra Nevada lakes and ponds (and streams in certain basins) to date. Fish populations are sampled using Swedish-made experimental gillnets. Usually one 1.8m by 36m 6-panel monofilament net is set at each lake with fish, or where the presence of fish cannot be ruled out, for 8 to 12 hours, either during the day or at night. Visual encounter surveys are performed for diurnal amphibian species during warmer periods of the day only. Habitat features included in the survey are: littoral and shoreline terrestrial substrate, shoreline depth at one meter from waters edge, shoreline aquatic vegetation abundance, tributary and lake spawning habitat, evidence of trout reproduction, and the location of fish barriers.

Data collected in the field are stored on Palm handheld computers and then downloaded to a secure SQL database after each trip. This method facilitates data management and has generally been successful, as long as crews use backup procedures included in the protocol. During the off field season, data are compiled into a FileMaker Pro application that has proven...
user-friendly and portable. There are over 10,000 lakes surveyed to date, and over 13,000 surveys included in the database.

Although amphibians were found at 42% of all lakes surveyed, versus 18% for fish, fish frequently occupy the larger waters to the exclusion of certain amphibian species. Especially hard hit by fish presence are mountain yellow-legged frogs that, because of their extended multiyear larval stage and highly aquatic adult stage, require nearly the same perennial habitats and water quality as trout. Though other factors contribute to the current decline of native amphibian species, CDFG can implement changes in fisheries management that can, and has, improved native fauna status locally.

As of May 2007, CDFG basin management plans have been developed for 27 high country basins. These planning efforts facilitate watershed-scale versus an ad hoc lake-by-lake approach to aquatic resource management, and enable us to balance management between native fauna and historic recreation. Since there is no current or likely future shortage of angling opportunity in the Sierra Nevada, and since amphibian restoration that involves fish removal is a costly and slow process, actual reductions in angling recreation through management are more perceived than real. Our approach for amphibian restoration is to regain clusters of fish-free complexes of lakes and connected streams that are sheltered from trout emigration by fish barriers. These restoration areas are made fish-free through non-chemical means only, using gillnets and electrofishing. An average restoration project that includes two to four lakes and ponds and connecting streams usually takes three years of sustained effort to make fishless. To date, all restoration sites are located close enough to extant mountain yellow-legged frog populations such that little or no frog translocations have been necessary.

Fisheries management will continue in the majority of waters in the Sierra Nevada. Generally, our improved understanding of high mountain fisheries has revealed that many, in fact most, fisheries are self-sustaining, especially in the higher elevation alpine waters. Stocking continues to be an important fisheries management tool, though the numbers of fished stocked has been reduced. Though brook trout Salvelinus fontinalis are the most common fish species in California HMLs, with few exceptions they are no longer stocked. We are experimenting with stocking small numbers of large brown trout Salmo trutta (0.5 to 1.5 pound fish) on top of stunted brook trout populations in several small lakes to determine if improvements in brook trout average condition will result.

We believe that the public perception of a loss of angling opportunity far exceeds reality. A high country angler guide has been developed for the Eastern Sierra portion of the Sierra Nevada, where most amphibian restoration activities have transpired. This product has been well received by anglers, and will eventually include all surveyed HMLs and be developed for the Department's web site alongside the front country angler guide.

The Department’s fish stocking program has been recently challenged in a lawsuit brought forth by the Center for Biological Diversity. The plaintiff claimed that stocking activities continue to cause harm to native Federal and State-listed species, and Species of Special Concern, especially the mountain yellow-legged frog. A recent court decision held that the Department must complete an analysis of the statewide stocking program through the California Environmental Quality Act process. However, this process was already progressing prior to the lawsuit, and should be completed in 2009. The plaintiff's request for injunctive relief, which demanded the cessation of all fish stocking until the CEQA document is finalized, was not granted by the court.
The following objectives are used to develop management plans that attempt to balance recreation with native biodiversity:

4.) Manage HMLs and streams in a manner that maintains or restores native biodiversity and habitat quality, will support viable populations of native species, and provides for recreational opportunities considering historical and future use patterns. In some areas, most or all of the waters may be managed as natural reserves with little or no angling available. Likewise, in areas of high recreational demand, most or all of the lakes may be managed for recreational angling.

5.) Trout stocking allotment changes should be based on site-specific data collected within the last 7 years.

6.) For each HML, the species, frequency, and number of trout stocked should be guided by the following provisions:

A) Since mountain yellow-legged frog abundance and distribution has declined and is negatively correlated with trout presence, lakes with extant, or existing, populations should generally not be stocked with fish. Where a population exists within 2 km of an established high mountain lake fishery, an assessment of fishing use and the feasibility of trout removal should be made to determine if the water could be converted to a fishless condition in order to benefit mountain yellow-legged frogs. Wilderness fisheries management should incorporate objectives of the CDFG/USFS mountain yellow-legged frog Conservation Strategy, when available.

B) Stocking waters in areas with other amphibian Species of Special Concern, such as the Yosemite toad *Bufo canorus*, will be reviewed to assure that the native biodiversity objective is met.

C) Golden trout *Oncorhynchus mykiss aguabonita* are native to the South Fork Kern River and are sometimes given priority over other trout species and stocked into waters following existing CDFG Commission policy. Other species of trout may be stocked to meet other fishery management objectives and for experimental fisheries management programs. However, the stocking of brook trout should generally be avoided because they are a lake-spawning species with a greater tendency to become overabundant and produce stunted populations at the expense of native amphibians and other trout species. Brook trout should not be stocked where their range may be extended.

D) After achieving aquatic native biodiversity objectives above, HMLs could be managed to optimize angling opportunity within a given basin. For example, some HMLs might be managed for trophy-sized fish, some for fast-action on smaller sized fish, and others for angling species diversity.

E) Trout should not be stocked into waters with existing self-sustaining trout populations unless needed to meet goals for improving angling diversity, trophy or fast-action fishing, or research. Experimental planting of trout to control undesirable fish populations is allowed under this provision.

F) In northern California, stocking has been modified to reduce impacts on Cascade frogs *Rana cascadae*.

Fish Stocking Guidelines

In the Sierra Nevada, most HMLs stocked with golden trout or rainbow trout *Oncorhynchus mykiss* are on an every other year schedule, with some high use waters stocked every year (Table 1). Stocking density ranges from a low of 35 fish per acre to a high of over 600 fish per acre, but most lakes are between 120 to 150 fish per acre (Table 1). The differences are based on management direction for fast action or trophy angling, level of public use, and actual fishery performance. Generally, we have reduced stocking density dramatically in the last decade, with some large lakes receiving only 10 to 20 percent of historic numbers. In northern California, stocking is usually at about 250 trout/acre every other year. Stocking density has generally been reduced and is being evaluated based on fish condition.

In the Sierra Nevada, rainbow trout of the Kamloops strain are stocked at 38-40 mm and golden trout are stocked at about 33 mm (Table 1). We also have a few waters stocked with cutthroat trout *Oncorhynchus clarkii* at about 35 mm. All trout are stocked as fingerlings from a Beechcraft King Air. In northern California, rainbow trout are about 60 mm and are stocked using both plane and horse packing. Rainbow trout are stocked around mid July in the Sierra Nevada, and golden trout and cutthroat trout are usually stocked during the first half of September, whereas in northern California, rainbow trout are stocked in HML at ice out, usually by the end of June/early July.

Stocking rotation, like stocking density, varies based on management direction, public use, and the fisheries manager’s interpretation of monitoring data. Most lakes are on an every other year schedule. The alternative schedule is annual stocking. Because of inevitable issues with fish availability or survey status, some lakes may go through several cycles without being stocked, and then may be stocked with a higher density or more frequently to catch up. In northern California, many lakes are now stocked every year.

Fishless Lakes Management

Lakes that are fishless are not stocked without an exemption from the Chief of Fisheries Programs Branch, and the applicable Forest Supervisor, if located in Wilderness. Similar approval would be required to change the species of fish stocked from what had been stocked prior to wilderness designation. Lakes identified for amphibian restoration in basin management plans are no longer stocked. Fish populations may be removed through non-chemical means to facilitate recovery of native species. In northern California, the lakes that have gone fishless due to the suspension of stocking to benefit amphibians will remain in this management scenario for the present.

State of Idaho
Kevin Meyer, Dan Schill, Ed Schriever, and Martin Koenig

Alpine Lake Management

Over 3,000 alpine lakes exist in Idaho, ranging in size from small temporary ponds to large lakes over a mile long. Approximately 1,039 lakes currently contain fish, but only 684 are currently stocked by the Idaho Department of Fish and Game (IDFG). Anglers utilizing alpine lakes in Idaho consistently express the highest level of satisfaction with their fishing experience
Alpine lakes provide an enhanced fishing experience in scenic country with the opportunity for solitude and remoteness, and are an important component in Idaho’s recreation economy, with over 40,000 anglers fishing HMLs each year (IDFG 2007).

Many of the lakes have received fish since the early 1900s, when fish stocking was conducted by backpack and horseback, followed by aerial stocking in the last 50 years. Fish stocking of HMLs in Idaho is guided by a Memorandum of Understanding with the United States Forest Service (IDFG 2007). Although most of the species historically stocked were native to Idaho, they were not always native to certain watersheds. During the 1920s to 1950s, brook trout were stocked in many Idaho lakes and established naturally reproducing populations. Other apparently unsuccessful non-native fish stocked in the early 1900s included arctic char Salvelinus alpinus and Atlantic salmon Salmo salar. Yellowstone cutthroat trout O. clarkii bouvierii were utilized for stocking in Idaho through the 1980s in both native and non-native watersheds. All strains of rainbow trout used for stocking HMLs were of non-native coastal stocks. In addition, bull trout Salvelinus confluentus, golden trout, brown trout, and arctic grayling Thymallus arcticus have been stocked to provide diverse fishing opportunities and meet specific management needs (IDFG 2007).

Historically, HMLs in Idaho were managed to provide diverse angling opportunities. Wilderness areas were not designated at the time and little consideration was given to native fauna occurring in the lakes. Prior to fish introductions, amphibians were the top vertebrate carnivores in most alpine lakes (Pilliod et al. 1996). Introductions of fish into some of these lake systems have reduced amphibian populations through predation and competition (Hoffman and Pilliod 1999). More recently, IDFG uses an adaptive management approach to guide the HML fish-stocking program. Ecological and biological aspects of maintaining healthy amphibian populations are now considered in determining how alpine lakes are managed. Potential impacts to downstream native fish populations are also part of the decision process.

IDFG is currently developing a HML management plan, based in part on the following guidelines:

1. Where desirable and feasible, some lakes will be maintained as fishless, which will allow for maintenance of natural conditions for native fauna within alpine ecosystems.

2. Management of HMLs in wilderness and national recreation areas will be coordinated closely with the appropriate land management agencies. The “Policies and Guidelines for Fish and Wildlife Management in Wilderness and Primitive Areas” manual, developed by the U.S. Forest Service, U.S. Bureau of Land Management, and the Association of Fish and Wildlife Agencies, will guide management of HMLs. The Department is the lead agency for fish population management in HMLs in Idaho.

3. Self-sustaining native trout populations will be maintained, with species of greatest conservation need, native species, and threatened and endangered species within HML drainages given management priority. Sterile fish may be stocked to eliminate potential interbreeding with native fish in a drainage. Self-sustaining populations of non-native species may be reduced to achieve native species goals or other fish management goals; toward this end, research is underway to assess whether stocking sterile Tiger muskie in HMLs can remove non-native fish (primarily brook trout) from a HML.

4. Most HMLs in Idaho currently designated as fishless appear to provide amphibian habitat. Lakes that are fishless and that have never been stocked previously may remain...
fishless. A few lakes that currently hold fish may be removed from the stocking schedule as a research experiment to measure fish, amphibian, and other natural fauna population responses.

Fish Stocking Guidelines

Idaho HML fish stocking guidelines vary somewhat from region to region. However, standards generally are to stock about 200 fish/acre at a size of about 40-60 mm (Table 1). Stocking usually occurs in August if possible, and usually occurs on a 3-year rotation but ranges from 2-5 years depending on factors such as population failure and angling pressure. Currently, most fish stocked in Idaho HMLs are either sterile rainbow trout or westslope cutthroat trout, but grayling, golden trout, and Yellowstone cutthroat trout are also occasionally stocked.

Use of Sterile Fish

The genetic conservation of wild, native trout populations is a management priority for IDFG, which recently established a policy to only stock putative sterile fish (treated with pressure or temperature to sterilize the fish) in systems where reproduction between native and hatchery fish was possible (IDFG 2007). The establishment of this policy was based on research that indicated sterile rainbow trout are able to perform well in a wide range of stream habitats (Dillon et al. 2000) and in productive reservoirs (Teuscher et al. 2003).

The implementation of this policy also resulted in stocking sterile rainbow trout in hundreds of HMLs. However, recent research has demonstrated that diploid rainbow trout survive 50% better than triploid rainbow trout in HMLs (Kozfkay 2005; Kozfkay and Koenig 2006). Ongoing research will be used to more accurately determine, in the absence of paired diploid stocking, whether triploids still underperform, and whether modifications to stocking densities or species strains can help reduce any differences anglers may experience in catch rates of fish in HMLs. If not, fisheries managers may need to adjust stocking strategies for sterile fish rather than rely on historical stocking levels, as is currently being done.

Angler Use

Very little creel data is available for Idaho HMLs. However, in a statewide angler survey, 10.8% of anglers said their preferred waters to fish were HMLs, and an estimated 6.1% of the total angler hours in Idaho were spent fishing HMLs. Angler satisfaction with HML fishing was exceeded only by angler satisfaction with stream fishing for trout.

Fishless Lakes Management

Fishless lake management in Idaho HMLs starts first with defining what is considered a lake. Potential classification schemes currently allow subjective analysis of ecological impacts of fish occupancy in HMLs. Those that want to show that most historically fishless lakes are occupied by introduced fish define a lake as having a minimum depth of 3 meters or a surface area greater than an acre. In some ways, this perception has been perpetuated by referring to HMLs as the subset of all water bodies capable of sustaining fish populations (listed in the IDFG stocking catalog). Idaho’s statewide Fish Management Plan currently reflects this. Maintaining
this perception can be problematic when evaluating ecological impacts of our HML fish program, and careful consideration of this issue should be addressed in Idaho and elsewhere.

It is important to develop a comprehensive understanding of habitat needs and specific life history information for the native fauna that are potentially impacted by introduced fish. In the example of the mountain yellow-legged frog, the habitat needs for frog reproduction are virtually identical to those of fish, and maintaining abundant shallow fishless habitat is not an effective management strategy for these frogs. This is tied to the multiple year larval development and a need for deep water. In contrast, the short (90 day) larval life history of Columbia spotted frogs R. luteiventris results in compatibility with fish through the use of habitat not suitable for supporting fish. Although long-toed salamanders Ambystoma macrodactylum life history includes overwintering larvae, their habitat requirements appear to be less stringent than mountain yellow-legged frog, and maintenance of fishless habitat (whether suitable for fish or not) is an effective management strategy for persistence. Idaho recognizes long-toed salamanders’ impacts at the individual lake level, although they have persisted through 40+ years of a fisheries program that has maintained a similar size footprint at the landscape level.

Idaho’s Lewiston Management Region has defined lakes as permanent water bodies, all of which are capable of supporting native fauna, and some of which are capable of supporting fish. Those lakes that are fishless are managed as such to provide refuge areas for fishless processes and sanctuary to ensure the persistence of native fauna.

State of Montana
Ladd Knotek and Grant Grisak

Fish Stocking Guidelines

General stocking rates in Montana are 50-150 fish/acre (Table 1), but vary by region, management objective (e.g., trophy lakes receive lower numbers, genetic "swamping" lakes receive higher numbers), lake morphology, and productivity. Most lakes are stocked with 50 mm westslope cutthroat trout, with the exception that most lakes (76%) in the Beartooth Mountains are stocked with 50 mm Yellowstone cutthroat trout (which are native to that area). However, size at stocking may vary since grayling, rainbow trout, and golden trout are also stocked statewide, although they make up <5% of the total HML plants in Montana.

Lakes are typically stocked in late June to August, under the rationale that zooplankton and insect densities are near their peak, temperatures are most preferable, and space at the hatcheries is at a minimum. Stocking rotation in Montana varies by region, but in general is on a 2- to 4-year rotation or a 7- to 10-year rotation. Interestingly, many of the managers using less frequent stocking also stock at lower densities. Changes are made based on a variety of factors such as special management objectives (e.g., trophy fish), angler access and pressure, and the amount of natural reproduction. For example, in Region 1 (the South Fork Flathead system), lakes have been stocked more frequently and at high densities to experimentally determine if non-native genes in a population can be "swamped" out over time. Managers typically adjust rotations to the level of natural reproduction and fishing pressure where data is available.
Fishless Lakes Management

Montana has no statewide policy for fishless lakes. Most areas have a large fishless lake component, but the rationale varies by the biologist/manager. Some specifically designate fishless lakes to maintain wilderness values, historical ecological processes, and amphibian distribution, while other lakes are simply inaccessible or neglected. However, most lakes that are currently fishless remain that way.

State of Nevada
Alan Jenne

Currently, the Eastern Region of the Nevada Department of Wildlife manages 19 of the 25 named lakes in the Ruby Mountain and East Humboldt Range as HML fisheries. The lakes generally lie between 8,550 and 10,000 feet in elevation and range from less than 2 acres to 29 acres. Eleven lakes have self-sustaining populations, while eight others have established populations that need periodic augmentation. The self-sustaining fisheries are generally Brook trout populations and are managed under a “wild fishery” management concept. The augmented populations are generally a hatchery-reared stock of Lahontan cutthroat trout *Oncorhynchus clarkii henshawii* and are managed under a “unique or quality” concept.

Stocking of these HMLs can be dated back to 1895 when pack-stock was used as the primary stocking tool. Presently, a helicopter is most often used. Species planted in the past have included brook trout, golden trout, rainbow trout, tiger trout, arctic grayling, and lake trout *Salvelinus namaycush*. Stocking rates have been variable depending on survey results, although stocking cycles have generally been maintained at 3-year intervals. Baseline biological surveys of the lakes were completed during the period between the 1930s and the 1950s and resulted in baseline water quality, species presence, substrate types and crude mapping. Since then biological monitoring has focused on growth rates, angling pressure, water quality, and reproductive and overwinter success. Past management activities have included Mysis shrimp introductions in the 1950s and 1970s, eradication and re-introduction of golden trout (1963), outlet dam construction projects, and the introduction of different predators to control brook trout populations (LCT, Rainbow and Lake trout).

In general, the lakes are limited by over winter survival, low productivity (low pH, short growing season), and limited natural reproduction. Issues related to the HMLs include limited access (through private to Forest lands), native trout recovery waters downstream, and endemic aquatic species.

Fish Stocking Guidelines

Stocking density have been variable and are based on a combination of factors such as creel surveys, population sampling and overwinter survival. In general, the stocked fish are fingerlings, 25-50 mm in length, a size adequate for helicopter planting. We generally stock in the mid summer (July & August) on a 3-year rotation, unless an overwinter loss has been documented.
Fishless Lakes Management

Fishless lakes in Nevada are those that have been proven in the past not to support a fish population (currently 6 of the 25 named lakes in the Ruby Mountains and East Humboldt Range). There are many other small, unnamed water bodies that California may term a lake that we do nothing with and may soon need to be quantified. Additionally, NDOW has surrendered management of two lakes in the Great Basin National Park.

State of New Mexico
Kirk Patten

High lakes are an important angling resource for New Mexico anglers. New Mexico Department of Game and Fish (NMDGF) manages or is involved in management of approximately 50-60 HMLs on private and public land ranging in size from approximately one to twelve surface acres. Most HMLs are located within private land or designated wilderness areas. Beginning in the early 1900s, NMDGF and other federal agencies began stocking HML with a variety of fish species. Species included native cutthroat trout, Yellowstone cutthroat trout, rainbow trout, golden trout, brown trout, and brook trout. From the 1980s to 1999, HML stocking of wilderness lakes was conducted with use of helicopters. Stocking frequency and numbers has declined since the 1970s and most lakes have not been stocked since 1999. Declines in stocking frequency resulted from incomplete information regarding the need to stock certain lakes as well as concerns of stocking on existing populations of Rio Grande cutthroat trout (RGCT). There was also a desire to begin stocking excess RGCT into HML.

NMDGF began surveys (fish present, bathymetry, water quality, natural reproduction, connection to stream systems) of all HMLs managed as fisheries in 2004 to better understand stocking needs and effects on other fish populations. Since that time, 33 HMLs have been surveyed. Twenty-four of the 33 HML contain trout (mostly brook trout or non-native cutthroat trout) and nine of the 33 likely winterkill on a regular basis. There are self-sustaining populations of trout in 67% of the lakes surveyed though only 21% is by Oncorhynchus spp. Based on these surveys, NMDGF did stock some lakes with RGCT in 2005 and is formulating stocking strategies for additional lakes in the future. NMDGF will continue to manage HMLs for angling in the future, including stocking RGCT. Lakes that likely winterkill frequently will not be stocked. Future challenges for HML management will include wilderness issues (e.g., stocking of fishless lakes, use of helicopters), effects of stocking on other native species, bureaucracy (different agency interests), and meeting angler needs.

Fish Stocking Guidelines

New Mexico has no written HML management policy. Historically, fish stocking density in New Mexico consisted of stocking one bag per lake; more recently, 250/acre has been used for a stocking density. Size of fish at stocking ranges from 25-50 mm (Table 1). Stocking usually occurs during late summer and fall on a planned 4-year rotation that is somewhat flexible depending on the level of information available on a particular HML, natural reproduction, proximity to native fish populations, accessibility, and use by anglers. Historically, New Mexico only stocked lakes that were believed to support trout populations.
Angler Use

Creel information in New Mexico has been collected at the Latir Lakes, a chain of nine HMLs on private land that were leased by NMDGF through the late 1980s. Only four of the lakes support fish populations. Three of the four are accessible by vehicle, the fourth only accessible on foot or horseback. Between 1975 and 1983, an average of 939 angler days were spent at these lakes, and harvest averaged 2.4 fish per angler day.

State of Oregon
Rhine Messmer

The Oregon Department of Fish and Wildlife’s (ODFW) Wilderness or High Lakes Management Program covers approximately 750 lakes in the Cascade Mountain Lakes, and approximately 80 additional lakes in the Eagle Cap Wilderness, Elkhorn and Strawberry Mountain areas in Northeast Oregon. The majority of these lakes are in wilderness areas or on forestlands administered by the U.S. Forest Service. Many of these lakes were created by various geological processes such as glacial scouring about 12,000 years ago and only a few dozen contained native rainbow or cutthroat trout.

Fish Stocking History and Technology

Stocking of many of Oregon’s mountain lakes began at the turn of the century when propagated fish became available. Fish arrived in many areas in 1912 Oregon via railroad on “The Rainbow” a specially designed railcar containing various species of trout, which were stocked into many previously fishless lakes. Fish were then handed over to “public-spirited citizens” for stocking into many fish-barren lakes.

Initial stocking methods relied on packing fish in on horses or mules to the remote lakes. In the 1940s ODFW began using aircraft for stocking wilderness lakes with the benefit of being able to stock lakes in a shorter period of time, but the accuracy of stocking was reduced because many of the lakes were difficult to hit. Also, it was noted that when the Department switched from on-the-ground stocking to air stocking, there were reduced opportunities to conduct on-sight evaluations of stocking programs.

Fish stocking continued to be conducted in wilderness lakes with the primary objective of providing maximum fishery benefits up until many areas were designated Wilderness Areas in 1964. Most of the lakes that were deep enough to sustain fish were first stocked during this time period with little concern expressed for native trout or non-game species. During the late 1930s and 1940s, the Oregon Game Commission (predecessor of ODFW) and the U.S. Forest Service conducted some of the first physical and biological investigations of wilderness lakes. A common objective of these surveys was to evaluate current fishery production and to make recommendations on fish stocking programs. Further advancements in air stocking were implemented in 1980 when we switched to helicopter stocking for the majority of our HMLs. In 1995, we began using our “Air Stocking Device“ which is a portable liberation unit that has 30 separate fish cylinders. Currently, our Cascade Lakes Stocking Program takes place every two years and stocks approximately 650 lakes in 5-6 days during early July. Lakes in Northeast Oregon are stocked on the same schedule as the Cascades but stocked with fixed-wing aircraft. We also utilize horseback and llama stocking in areas of the state with active volunteer groups.
1964 Wilderness Act, States Authority to Manage Fish and Wildlife

With passage of the Wilderness Act in 1964 the state’s fish stocking program was “grandfathered-in.” As part of the stocking process, the department annually notified the USFS of when and where lakes were being stocked. In 1986 a Memorandum of Understanding (MOU) between the USFS Region 6 and ODFW was developed describing each agency’s roles and responsibilities for fish and wildlife management. This MOU recognizes ODFW as being responsible for management of fish and wildlife populations on federal land. This MOU was reaffirmed by the U.S. Forest Service, Bureau of Land Management, and International Association of Fish and Wildlife Agencies (IAFWA) in 1995. In this letter, Jack Ward Thomas, Forest Service Chief wrote:

“It is imperative to remember that the responsibility for decisions on stocking fish or wildlife in wilderness areas rests with the state in coordination with the administering agency (Forest Service or Bureau of Land Management). It is simply inappropriate to make decisions about fish stocking, hunting or other state activities or require Federal NEPA analysis by State agencies for these activities”

USFS Coordination and Conservation Issues

During the early 1990s ODFW implemented changes to its wilderness lakes stocking programs to address native fish conservation concerns and provide for sustainable non-game populations including native amphibians such as the mountain yellow-legged frog, spotted frog, and the long-toed salamander, which historically were the top predators in the lakes before the fish were introduced. In 1996, a coordination process between ODFW and USFS was developed that outlined future fish stocking in wilderness lakes. This process paper was jointly developed between ODFW and USFS Regional Office Fisheries & Recreation staff.

Over the last 10 years, ODFW has implemented changes to its HML stocking program to meet emerging fishery management and conservation needs as well as address conservation needs of native wildlife species, ecosystem and wilderness management approaches. These changes have included discontinuing stocking lakes to preserve unique or outstanding water quality (Lake Natasha) or native fish conservation, reduced stocking densities in many lakes to improve fisheries or reduce impacts on amphibians, and made changes to the species of fish stocked into many lakes with outlets to minimize impacts to native fish stocks (primarily bull trout). In the future, ODFW will continue to emphasize the need to evaluate the effectiveness and public value of our HMLs fisheries and implement management changes as needed to meet emerging fishery and wilderness ecosystem management needs.

High Lakes Fish Stocking Into the Future

ODFW will continue to refine its wilderness stocking program as needed to provide the fishery benefits, sustainability of non-game species, water quality objectives, wilderness values, and ecological objectives. Currently, ODFW is in the process of developing Conservation Plans in many fish management areas as part of implementation of the Native Fish Conservation Policy. It is expected that, in the future, Conservation Plans will be developed for wilderness lakes. Until then, ODFW will continue to coordinate with Federal Agencies and implement wilderness lake fish management programs that meet fishery expectations of the public as well as ecological, conservation, and wilderness value objectives. It is widely recognized that
additional, more comprehensive research and investigation is needed to meet all these objectives for wilderness lakes management. Logistics, staffing and funding will continue to be a challenge for ODFW due to the high demands on District Fishery Managers.

State of Washington
Jim Uehara

Washington Department of Fish and Wildlife’s (WDFW) high lakes program stated goal is to “…protect and enhance fish populations and their habitats in high lakes while maximizing recreational opportunities that are consistent with natural resource needs.” The program follows a set of guidelines designed to meet this goal and promote consistency in field sampling, fish stocking (both densities and frequency of stocking), and public outreach. These guidelines may be found in Uehara (2005) or at: http://wdfw.wa.gov/fish/high_lakes/ on WDFW’s website.

Field Sampling Guidelines

Reference material for field survey methods, as well as data forms that are to be used for data collection and entry, are provided to each high lakes biologist. WDFW is currently working to get a full complement of the existing data in a centralized database.

Fish Stocking Guidelines

Since Washington State began stocking fish in 1933, over 15 fish species have been planted into Washington’s HMLs. Currently, only rainbow trout, westslope cutthroat, coastal cutthroat, golden trout, and on an experimental basis tiger musky are stocked in HMLs. The stocking plan for the vast majority of these lakes uses a single age class of fish stocked at low densities (50-100 fry/acre) once every 3-4 years.

Fish Species and Stock Selection Guidelines

Primarily, fish species that are native to the lake’s basin and that have demonstrated an inability to reproduce are used in the stocking program. New fish species are not to be introduced into a lake without a completed lake survey and public review. Stocking of high-risk fish species may only be done in lakes where they do not present conflicts with native fish populations or where they physically cannot migrate or be washed out of the lake.

Angler Use

Based on a statewide angler preference survey in 2002, an estimated 128,000 license-buying anglers use Washington’s high lakes annually, for an average of 8.4 days. This equates to over a million angler days per year, with an estimated annual worth of nearly $34 million, while WDFW’s cost associated with managing the program is estimated to be around $40,000.
SUMMARY

Of the nearly 29,000 HMLs located within the seven states represented at the 2006 High Mountain Lake Summit meeting, salmonids are present in about 6,900 lakes (24%), and about 2,750 HMLs (10%) are currently being stocked with fish. These estimates are much lower than those of Bahls (1992), who concluded that within these same seven states, 6,720 lakes (60%) contained salmonids, and 5,263 lakes (47%) were regularly stocked. This difference is largely due to a difference in the definition of what constitutes a HML, since the estimates of Bahls (1992) included only 11,235 HMLs for these seven states. Much of this difference stems from California; Bahls (1992) included only 4,131 HMLs for California, whereas our total includes 17,889, with the increase mostly including smaller ponds.

Regardless of the exact number of HMLs in each state, it appears that approximately 2,500 fewer HMLs are currently stocked in these states compared to the estimate of Bahls (1992). Nearly all western states have in recent years reduced or eliminated exotic introductions, reduced the number of lakes being stocked, terminated stocking where natural reproduction occurs, and preserved or augmented the number of fishless lakes (DerHovanisian 1997). Without supplemental fish stocking, many salmonid populations previously found in HMLs eventually winterkill or cannot be maintained by natural reproduction. These trends may continue as state agencies remain committed to and continue to grapple for a balance between providing quality angling opportunities and protecting native biota in HMLs.

Several generalizations can be drawn for the seven states with biologists attending the meeting. Most states indicated high satisfaction among anglers fishing HMLs, and many anglers indicate it is their preferred angling setting. In general, all states have terminated nearly all stocking of brook trout. And there is a continued impetus toward achieving aquatic native biodiversity objectives for HML management, which sometimes means stocking fewer fish in fewer places, especially where naturally reproducing populations are already established. At least three states (California, Idaho, and Washington) have formal fishless lake policies, and some are researching methods to convert fish-bearing HMLs to fishless lakes with the use of chemicals, netting, and sterile fish predators.

For those HMLs that continue to be stocked for the angling public, most of the seven states represented at the meeting stock either rainbow trout or a subspecies of cutthroat trout in July and August, at sizes from 25-50 mm in total length, and densities of 50-200 fish/acre, and on a rotation of every two to four years. These details have changed little in the last few decades (DerHovanisian 1997).

Several states are developing comprehensive HML management plans based on scientifically strong sampling designs and conservation biology-based planning approaches to steer management direction and decisions. There is a continued emphasis on answering questions such as (1) which lakes have naturally reproducing fish populations, (2) which lakes contain amphibian populations, and (3) whether exotic species such as brook trout can be eliminated to protect native species, or be reduced in numbers to prevent stunting. Such proactive steps will help insure that HML management continues to provide quality fishing opportunities while protecting native aquatic biota for future generations.
RECOMMENDATIONS

1. Publish HML research study results in peer-reviewed journals and management planning efforts in journals or agency reports to strengthen the credibility of these programs and increase professional awareness of HML management direction in the western United States.

2. Gather angler preference and creel data to more accurately determine use, harvest, and angler opinions of HML fisheries.

3. Continue expansion of data collection in HMLs to include more than assessments of fish populations, such as a more thorough survey of fishless lakes, amphibian populations, and other native aquatic biota.

4. Consider a follow-up workshop/summit in 5-10 years to evaluate progress and program success.
ACKNOWLEDGMENTS

Bill Hutchinson and Larry Barrett helped immensely with the logistics of the meeting, which was extremely helpful.

Table 1. Summary of high mountain lakes (HMLs) and stocking guidelines for several western states.

<table>
<thead>
<tr>
<th>State</th>
<th>Total fish stocked</th>
<th>Currently stocked</th>
<th>Species stocked</th>
<th>Dates of rotation</th>
<th>Stocking density (No./acre)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>17,889b</td>
<td>2,393</td>
<td>GT, RT, CT</td>
<td>Jul-Sep</td>
<td>2</td>
<td>120-150</td>
</tr>
<tr>
<td>Idaho</td>
<td>> 3,000</td>
<td>1,039</td>
<td>RTc, WCT, AG, GT, YCT</td>
<td>Aug</td>
<td>2-4</td>
<td>200</td>
</tr>
<tr>
<td>Montana</td>
<td>> 2,300</td>
<td>~ 900</td>
<td>WCT, YCT, AG, RT, GT</td>
<td>Jun-Aug</td>
<td>50-100</td>
<td>AG, RT, and GT comprise <5% of statewide HML stocking.</td>
</tr>
<tr>
<td>Nevada</td>
<td>36</td>
<td>21</td>
<td>LCT</td>
<td>Jul-Aug</td>
<td>3</td>
<td>Two HMLs are managed by Great Basin National Park.</td>
</tr>
<tr>
<td>New Mexico</td>
<td>50</td>
<td>32</td>
<td>RCT</td>
<td>Aug-Sep</td>
<td>4</td>
<td>250</td>
</tr>
<tr>
<td>Oregon</td>
<td>877</td>
<td>720</td>
<td>RT, CT</td>
<td>Jul</td>
<td>100</td>
<td>Cascade HMLs stocked in 5-6 days with device holding fish for 30 lakes/trip.</td>
</tr>
<tr>
<td>Washington</td>
<td>4,700</td>
<td>1,760</td>
<td>RT, CT</td>
<td>3-4</td>
<td>50-100</td>
<td>Many HMLs stocked by organized voluteer groups</td>
</tr>
</tbody>
</table>

*GT=golden trout, RT=rainbow trout, CT=cutthroat trout, AG=arctic grayling, YCT=Yellowstone cutthroat trout, WCT=westslope cutthroat trout; LCT=Lahontan cutthroat trout, RCT=Rio Grande cutthroat trout.

bIncludes all lakes and ponds on 7.5 min USGS maps above 1,520 m M.S.L. in the Sierra Nevada, and above 1,220 m for lakes in Northern California.

cComprise the bulk of stocking in Idaho.
HIGH MOUNTAIN LAKE SEMINAR
IDAH0 DEPARTMENT OF FISH AND GAME

January 15, 1976

mallet + Pollard
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION.</td>
<td>1</td>
</tr>
<tr>
<td>PRESENT HIGH LAKE MANAGEMENT IN IDAHO</td>
<td>3</td>
</tr>
<tr>
<td>ALPINE LAKES by Stacy Gebhards.</td>
<td>9</td>
</tr>
<tr>
<td>PRELIMINARY STATEWIDE POLICY PLAN FOR MOUNTAIN LAKES IN IDAHO.</td>
<td>15</td>
</tr>
<tr>
<td>Resident Trout Major Program -- Mountain Lakes</td>
<td>16</td>
</tr>
<tr>
<td>Problems and Strategies</td>
<td>16</td>
</tr>
<tr>
<td>HIGH LAKE MANAGEMENT IN SURROUNDING STATES.</td>
<td>18</td>
</tr>
<tr>
<td>California</td>
<td>19</td>
</tr>
<tr>
<td>Montana</td>
<td>20</td>
</tr>
<tr>
<td>Nevada</td>
<td>21</td>
</tr>
<tr>
<td>Oregon</td>
<td>22</td>
</tr>
<tr>
<td>Utah</td>
<td>23</td>
</tr>
<tr>
<td>Washington</td>
<td>24</td>
</tr>
<tr>
<td>WASHINGTON STATE GAME DEPARTMENT HIGH MOUNTAIN LAKE MANAGEMENT GUIDELINES.</td>
<td>29</td>
</tr>
<tr>
<td>Angler Preference.</td>
<td>30</td>
</tr>
<tr>
<td>Stocking Formula.</td>
<td>30</td>
</tr>
<tr>
<td>Stocking Rates.</td>
<td>31</td>
</tr>
<tr>
<td>Stocking Frequency.</td>
<td>31</td>
</tr>
<tr>
<td>Type of Fish Planted.</td>
<td>31</td>
</tr>
<tr>
<td>Size of Fish.</td>
<td>33</td>
</tr>
<tr>
<td>Time of Stocking.</td>
<td>33</td>
</tr>
<tr>
<td>Planting Methods.</td>
<td>34</td>
</tr>
<tr>
<td>Natural Mortality.</td>
<td>34</td>
</tr>
<tr>
<td>Regulation Consideration</td>
<td>34</td>
</tr>
<tr>
<td>Utilization of Gammarus</td>
<td>35</td>
</tr>
<tr>
<td>Data Collection Assistance.</td>
<td>36</td>
</tr>
<tr>
<td>Literature Cited.</td>
<td>40</td>
</tr>
<tr>
<td>TYPICAL SURVEY OF A HIGH LAKE IN WASHINGTON</td>
<td>41</td>
</tr>
<tr>
<td>GEOMORPHIC AND OTHER PHYSICAL CONDITIONS AFFECTING FISH POPULATION IN HIGH MOUNTAIN LAKES by Dr. William S. Platts.</td>
<td>53</td>
</tr>
<tr>
<td>TROUT MANAGEMENT IN THE CALIFORNIA BACK COUNTRY by E. C. Fullerton.</td>
<td>56</td>
</tr>
</tbody>
</table>
INTRODUCTION

A seminar dealing with management of high mountain lakes was included as a portion of Idaho's Annual Fishery Biologists' and Fish Hatchery Superintendents' Conference for 1976.

The intention of the seminar was to review present mountain lake management in Idaho and in other states with the end result being better mountain lake management in the future. This report was compiled from the seminar presentations and related material to be utilized by regional managers as an aid in their management program.

The main speaker at the seminar was Pat Marcuson (District Biologist for the Montana Fish and Game Department). Marcuson has surveyed over 1,000 high lakes in Montana and presented a slide presentation on his techniques and management philosophy. Marcuson's presentation was excellent but since there was no written text, it will not be covered in this report.

Each of Idaho's Regional Fishery Biologists and Managers answered a questionnaire relating to their present management of high lakes. That material was summarized at the meeting and is included in this report.

A general look at Idaho's alpine lakes (including stocking procedures) by Stacy Gebhards have been included for completeness.

Idaho is on the threshold of establishing a statewide policy plan for fish. At present this plan is in a preliminary draft stage. The portion of that plan that covers mountain lakes is included in this report.

The Chiefs of Fisheries in six adjacent western states were asked to supply information relative to their management of high lakes in their state. This information is also summarized.

Washington Department of Game has probably undertaken and reported on more high lake surveys than any other western state. As an aid to Idaho's management biologists, we have abstracted portions of reports by biologists James L. Cummins, James M. Johnston and Ken Williams.

Dr. William Platts was scheduled to speak at the mountain lake seminar but was unable to attend because of another pressing engagement. However, Dr. Platts has supplied an abstract from his current report on mountain lakes.

The State of California has had many problems with management of high lakes in national parks and wilderness areas administered by the Federal Government. To round out this report we have included a paper dealing with this problem in California.
Finally, the seminar ended with a summary of a few suggestions on future mountain lake management in Idaho.

Jerry Mallet
Fishery Research Supervisor

Herb Pollard
Fishery Management Supervisor
PRESENT HIGH LAKE MANAGEMENT IN IDAHO

At the present time the Regional Fishery Manager has the option of managing high lakes in his region in any manner he wishes within broad restraints. In an effort to determine techniques and management that are being applied in Idaho, a questionnaire was completed by each Regional Fishery Manager (six regions and two subregions). The results of that questionnaire and pertinent discussion are listed in this section.

1. How many high mountain lakes in your region (or subregion)?

<table>
<thead>
<tr>
<th>Region</th>
<th>High Lakes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>256</td>
</tr>
<tr>
<td>3</td>
<td>110</td>
</tr>
<tr>
<td>3A</td>
<td>400</td>
</tr>
<tr>
<td>4</td>
<td>47</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>46</td>
</tr>
<tr>
<td>6A</td>
<td>682</td>
</tr>
</tbody>
</table>

Total 1,636

2. The number of mountain lakes with each of the following species:

<table>
<thead>
<tr>
<th>Species</th>
<th>Number of Lakes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutthroat</td>
<td>699</td>
</tr>
<tr>
<td>Rainbow</td>
<td>427</td>
</tr>
<tr>
<td>Brook</td>
<td>198</td>
</tr>
<tr>
<td>Grayling</td>
<td>26</td>
</tr>
<tr>
<td>Golden</td>
<td>20</td>
</tr>
<tr>
<td>Dolly Varden</td>
<td>2</td>
</tr>
<tr>
<td>Westslope Cutthroat</td>
<td>1</td>
</tr>
<tr>
<td>Mixed*</td>
<td>117</td>
</tr>
<tr>
<td>Barren</td>
<td>176</td>
</tr>
</tbody>
</table>

Total 1,636
3. What percent of your lakes do you have a physical survey for (size, depth, spawning area, etc.)?

<table>
<thead>
<tr>
<th>Percent Surveyed</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td><10</td>
<td>1</td>
</tr>
<tr>
<td>10-25</td>
<td>3</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>>90</td>
<td>1</td>
</tr>
</tbody>
</table>

4. Do you stock high lakes in your region personally? Do hatchery personnel? Other (specify)?

<table>
<thead>
<tr>
<th>Hatchery Personnel</th>
<th>Combined Hatchery Personnel Major Effort</th>
<th>Combined Fishery Manager Major Effort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
5. If you do not personally stock high mountain lakes but designate this to hatchery personnel, do you (1) have a conference with them each year and outline their program detail? or (2) expect them to follow the catalog with little or no contact from you each year?

Annual Conference	3
Catalog Only	4
Combination	1

6. How do you determine which species each lake should contain?

The bulk of the managers indicated that they normally stocked the same species in each high lake that is historically contained. However, each listed the species availability a large constraint in their program. All managers were in favor of providing some variety of species in their program. Cutthroat was generally the most desired species for use in high lakes.

7. What stocking rate do you utilize for high mountain lakes?

<table>
<thead>
<tr>
<th>Stocking Rate</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>140/SA</td>
<td>1</td>
</tr>
<tr>
<td>150/SA</td>
<td>1</td>
</tr>
<tr>
<td>300-500/SA</td>
<td>1</td>
</tr>
<tr>
<td>500/SA</td>
<td>2</td>
</tr>
<tr>
<td>5,000/SA</td>
<td>1</td>
</tr>
<tr>
<td>1/2-1 lb./Lake</td>
<td>2</td>
</tr>
</tbody>
</table>
8. How often do you stock high lakes and does accessibility and/or use play a role?

<table>
<thead>
<tr>
<th>Stocking Frequency*</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Years</td>
<td>2</td>
</tr>
<tr>
<td>2-3 Years</td>
<td>1</td>
</tr>
<tr>
<td>3 Years</td>
<td>3</td>
</tr>
<tr>
<td>3-5 Years</td>
<td>1</td>
</tr>
</tbody>
</table>

* In most cases some lakes are stocked annually if access and pressure dictates.

9. List the estimated percentage of your lakes that you stock by each of the following methods:

<table>
<thead>
<tr>
<th>Region</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3A</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>6A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed wing aircraft</td>
<td>-</td>
<td>99%</td>
<td>95%</td>
<td>80%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Helicopter</td>
<td>33%</td>
<td>1%</td>
<td>5%</td>
<td>5%</td>
<td>95%</td>
<td>-</td>
<td>70%</td>
<td>80%</td>
</tr>
<tr>
<td>Horse</td>
<td>17%</td>
<td>-</td>
<td>-</td>
<td>5%</td>
<td>2.5%</td>
<td>100%</td>
<td>15%</td>
<td>10%</td>
</tr>
<tr>
<td>Backpack</td>
<td>47%</td>
<td>-</td>
<td>-</td>
<td>5%</td>
<td>2.5%</td>
<td>-</td>
<td>15%</td>
<td>5%</td>
</tr>
<tr>
<td>Trail bike</td>
<td>3%</td>
<td>-</td>
<td>-</td>
<td>5%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5%</td>
</tr>
</tbody>
</table>

10. How many high mountain lakes do you normally visit in a given year?

<table>
<thead>
<tr>
<th>Lake Visits Each Year</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td><2</td>
<td>1</td>
</tr>
<tr>
<td>2-5</td>
<td>1</td>
</tr>
<tr>
<td>5-8</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>10-20</td>
<td>1</td>
</tr>
</tbody>
</table>
11. Do you thoroughly survey and record data on the lakes that you see?

All responses were affirmative.

12. Which of the following items do you collect at the lakes that you visit?

<table>
<thead>
<tr>
<th>Item</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>7</td>
</tr>
<tr>
<td>Age and Growth</td>
<td>4</td>
</tr>
<tr>
<td>Depth-Surface Acres</td>
<td>6</td>
</tr>
<tr>
<td>Water Quality</td>
<td>2</td>
</tr>
<tr>
<td>Basin Characteristics</td>
<td>4</td>
</tr>
<tr>
<td>Inlet, Outlet Spawning</td>
<td>7</td>
</tr>
<tr>
<td>Access, Forage, Camping</td>
<td>5</td>
</tr>
<tr>
<td>Photos</td>
<td>6</td>
</tr>
<tr>
<td>Other</td>
<td>1</td>
</tr>
<tr>
<td>Use</td>
<td>1</td>
</tr>
<tr>
<td>Food Organisms</td>
<td>1</td>
</tr>
</tbody>
</table>

13. Do you receive very much information on high lakes from (1) CO's?
6 Yes - 2 No, (2) USFS? 4 Yes - 4 No, (3) Anglers? 5 Yes - 3 No, (4) Others? 1 Yes (I & E and Hatchery Personnel) - 7 No.

14. Do you need research help with surveys, etc. for your high mountain lakes?

6 Yes - 2 No - Region 5 with one lake and Region 4 with a relatively small number of lakes were the no answers. Region 1 indicated that although research assistance was needed, it was not a high priority item.

15. Do you have a fairly accurate estimation of the magnitude of the fishing pressure at each of your high lakes? 0 Yes, 75-99% of them? 6 Yes, 50-74%? 1 Yes, 25-49%? 0 Yes, 10-24%? 1 Yes, <10%? 3 Yes, 0%? 3 Yes.

16. Do any of your high mountain lakes have special regulations?

Special regulations are found on high lakes only in Region 2.

If so, list them and state the reason for and success of these regulations.

Fish Lake (Cedars) - August 1-November 30. Short season is an effort to protect native outlet spawning cutthroat. -- Region 2 rates this regulation a success.
Doe Lake (Selway) - Brook trout bag and possession limit is 50 fish. The liberal limits are an effort to reduce brook trout numbers and, therefore, increase size. As yet, the success of the regulation has not been determined.

Lizard Lakes #1 and #2 - Brook trout bag and possession limit is 50 fish. Reasons for and success of this regulation is identical to that for Doe Lake.

Steep Lake (Cedars) - August 1- November 30, bag and possession limit is 3 trout. This is a relatively accessible lake with golden trout. The regulation is an attempt to maintain the golden trout population and is termed successful.

17. Do you favor continued publication of the high mountain lakes booklet? A separate booklet for each region? No high mountain lake publication?

Continue in Present Form 5*
Separate Regional Booklets 1
Discontinue 2

* One of these five was a tentative yes, but had some reservations about continuing the booklet in its present form.

This item sparked more comment than any other item on the questionnaire. It was pointed out that when the booklet was initiated there was a need to encourage use in back country areas. The group agreed that there was no longer a need to encourage added pressure on this resource. To the contrary, most felt that many lakes are overused and use should be cut back if we hope to maintain the quality environment around these lakes as well as a quality fishery. Most of those that suggested continuing the booklet voiced a change in thought after having time to reflect on the issue. Most agreed that we should answer individual angler questions but not advertise the lakes.

18. Are high mountain lakes a high priority item in your region?

Four of the seven regions with high mountain lakes listed them as a high priority item. The other three listed high lakes as important but not a high priority. These three felt that their highest priority was for lowland lakes and streams that were heavily utilized and whose habitat was in danger. They also felt that generally the habitat in high lakes is stable, few contain populations not supported by hatchery stocks (no endangered populations), and that we can now and probably will always be able (through regulations and stocking) to maintain good fishing.
ALPINE LAKES

by Stacy Gebhards

Idaho was glaciated intermittently over the past 3 million years, with the Ice Age terminating about 10,000 years ago. Today's high elevation alpine lakes mark the final resting place of huge ice blocks which carved basins in the rock and built up moraines or levees at the outer edge which perform as a natural dam. Typically these lakes are at elevations over 5,000 feet and may be called by such technical names as alpine lakes, glacier lakes, cirque lakes, montane lakes, or tarns. Probably no one really knows how many mountain lakes there are in the State of Idaho. Through the years, the Department of Fish and Game has stocked fish in over 1,700. Hundreds of others too small or shallow to stock with fish are not even shown on Forest Service maps.

Anyone experienced at fishing alpine lakes soon recognizes that there is a great deal of variance in fish size or productivity between drainages and even individual lakes within the same drainage. Productivity of these lakes is a function of the geology, elevation, exposure, morphometry, and depth. One of the first principles you learn in limnology is that the biomass of plants and animals produced in a food chain is linked initially to the nutrients or minerals dissolved in the waters. Seawater, which is abundantly rich in minerals, is highly productive. In contrast is the almost non-mineralized waters which drain from granitic rocks and soil. A large portion of our alpine lakes lie within the Idaho Batholith which is predominately granite. The composition of granite is chiefly feldspar and quartz with small amounts of mica and hornblende, all of which are insoluble and chemically very stable. Lakes which are found in sedimentary rock formations (ancient sea or lake deposits) are much more productive. Here we find phosphate, carbonate, and sulphate rock constituents which are more readily soluble than granite and are leached into the drainage waters.

In a given drainage system, the water chemistry and productivity will change as the water flows down from the upper elevations. Comparison of lakes in Colorado with 4,300 feet elevational difference showed sharp increases in total organic matter, nitrates, calcium, phosphate, and pH in the lower elevation lakes compared to high elevation waters. Artificial fertilization of alpine lakes has been attempted, but without much success. The volume and rapid exchange of water through a lake system precludes application of fertilizers as a practical management technique.

Abundance or volume of plankton organisms, can be directly correlated with the water chemistry and mineral content. Even so, the numbers of plankton fauna in alpine lakes are comparatively small. Phytoplankton are chiefly diatoms rather than green algae. Zooplankton include cladocerans (or water fleas) and copepods. Several species of copepods are endemic to alpine lakes and take on brilliant colorations of scarlet, orange, or purple. These carotenoid or red pigments in the water fleas and copepods are absorbed in the muscle tissue of the fish and are an indicator of the fish's diet in the lake. Freshwater shrimp will also impart the deep red flesh colorations and are found in some alpine lakes.
Another important food item are the aquatic insects of the lake, particularly the case-bearing caddis fly larvae which inhabit the shallow water areas. These are utilized both during the larval stage and after the adult emerges above water. Mosquitoes and aquatic midges are a major grocery item in alpine lake fish diets. Midge larvae live in the soft bottom mud of the lake and are somewhat secluded from predation at this time. However, during emergence they must wriggle their way to the surface and are then easy prey for the fish.

We have seen that the water chemistry and general productivity of water tends to improve as it moves down drainage. Theoretically, then, fishing should improve as we move down off the mountain... but this is not always the case, because there are other factors which influence productivity and the fishery. One of these is the physical shape of the lake basin. Steep, rocky shorelines afford poor living quarters for midge larvae and other aquatic insects. Shallow lake basins with mud bottoms and shoreline vegetation provide excellent habitat for midges, caddis flies, shrimp, and other aquatic insects. Water temperatures are also warmer which accelerates total food production and the net result is bigger fish. Lakes which adjoin heavy timber at times receive significant quantities of terrestrial or forest insects which are utilized by the fish as these insects fall into the lake.

Elevation or altitude influences productivity and the fishery in several ways. The most obvious is water temperature and length of growing season between high elevation lakes which may still be ice-covered the third week in July while lower elevation lakes are ice-free six weeks earlier. Likewise, a lake on a north exposure will be ice-covered much longer. A lake which is not ice-free until mid-July probably freezes again in mid-October which means a total growing season of only 3 months or less in a year. Length of time a lake is ice-covered will vary from year to year, depending upon weather conditions and snowpack.

Dissolved oxygen is the principal limiting factor in an alpine lake fishery. The higher the altitude, the less oxygen the water can hold at saturation. A lake at sea level will contain 11 ppm dissolved oxygen at saturation while one at 10,000 feet will contain around 7 ppm. Optimum levels of dissolved oxygen for trout are about 5 ppm. Below this, the fish are under stress and losses will occur as levels reach 2.5 to 3.0 ppm. The margin of safety in a high elevation lake, sealed under the ice and snow for 9 months is indeed slim. Fish survival will be closely tied to the volume of water in the lake and the total oxygen demand during the ice period.

There is a point in time in the geological aging of an alpine lake, before it turns into a meadow, when it will no longer support fish. Ironically, the lake becomes progressively richer over a period of hundreds of years as it becomes more shallow. While the lake increases in biological productivity, which means more plankton, more insects, more vegetation, faster growing fish--the oxygen demand also increases and the safety margin for fish survival diminishes.

During the winter ice and snow cover, the organic materials, the vegetation, produced during the summer growing season are decomposing and using up the dissolved oxygen. Fish and other living organisms also drain the
oxygen supply. If oxygen demand eventually exceeds the supply, the fish die. Every summer, almost without fail, we receive reports of mountain lakes having been dynamited and all the fish killed. In nearly every instance these are lakes in which the dissolved oxygen ran out before the ice thawed. In some lakes it will occur every year; others may support fish for many years and then suddenly winterkill due to unusual weather conditions. The rigors of 8 or 9 months under ice and limited food supply places severe stress on fish and they often will not recover. It is not uncommon to observe numbers of large adult fish debilitated, covered with fungus patches, and dying off during the summer.

With few exceptions, nearly all of the alpine lakes originally were barren of fish. Only in those lakes, such as Fish Lake in the upper Clearwater, which had adequate stream access, did a native population become established. Cutthroat for our mountain lake stocking originates from spawn taken at Henrys Lake. Rainbow are spring spawning stocks purchased from out-of-state. Cutthroat and rainbow dominate our mountain lake fish plantings. In the early days, brook trout were planted extensively throughout the Sawtooth Mountains. These fish were an unfortunate choice in most instances because of their tendency to overpopulate and develop stunted populations. Brook trout adapt readily to stream or shoreline spawning situations whereas the other trout species must have spawning streams entering or leaving the lake. California golden have been stocked in only a limited number of lakes, primarily because of difficulty in obtaining a reliable source of eggs. Most of our goldens come from wild stock in Wyoming and they are only able to fill our requests every 2 or 3 years. Since 1968 we have stocked 34 lakes with grayling, also supplied from Wyoming. As yet we do not know if any of these populations are self-sustaining. Grayling are stream spawners and spawn shortly after the ice goes off.

Planting fish from a truck is a relatively simple procedure when you can drive to the water’s edge. Transporting live fish to a lake on top of a mountain at 10,000 feet elevation, 15 or 20 miles from the nearest road presents a little different problem. The old stand-by for fish hauling was the 10-gallon milk can. Each can when iced down could carry about one pound of small trout. Although this method proved to be quite serviceable, there were several disadvantages. When filled, each can weighed 110 pounds, making an extremely heavy pack load of 220 pounds to be carried by pack horse or mule. The tinkling of the ice in the cans or ice water sloshing on the back of a nervous pack animal often produces some rather explosive results. Many a trail and mountain side have been liberally stocked with fish. On long trips, rising water temperatures and oxygen depletion would often result in heavy mortality or complete loss of the fish. An improvement over the milk can was the canvas fish bag, which carried about the same amount of fish and water... but it too was plagued with the same problems of excessive weight, temperature control, and oxygen depletion.
Instead of using 10 gallons of water weighing 83 pounds to transport one pound of fish, we now haul 18 ounces of fish in three quarts of water weighing only 6 pounds. This is accomplished with a 3-gallon capacity, double plastic bag inflated with oxygen. One bag will carry up to 4,000 fish, depending upon their size. The bags are manufactured for the dairy industry, and are used as milk dispensers. Two 3-gallon bags are contained in a pack box which is lined with one inch sheet styrofoam. Six to eight pounds of crushed ice placed around the outside of the bags will hold water temperatures below 45°F for 12 hours and below 38°F for six hours, even with the boxes exposed to direct sunlight and hot summer temperatures. Three boxes can be easily packed on one horse, making a total of 24,000 fish that can be carried on a single animal. Quite often this is enough fish to stock 6 lakes. If the going gets too rough, the bags can be hand carried or put in a backpack for the final leg of the trip.
Planting of fish from the air is really nothing new. One of the first attempts at dropping fish from a plane was made in north Idaho in 1919. Many agencies experimented with aerial fish planting prior to World War II and by 1950 had worked out a number of successful techniques. One system used in Idaho was to carry the fish in milk cans in a large plane (the old Ford Tri Motor), and then pour the contents out the door of the plane while passing over the lake. Usually the man with the least amount of seniority got to do the pouring.

We also adapted the plastic bag transport to aerial fish stocking. Up to 30 bags can be carried in a small plane and as many lakes stocked on a single flight. The fish are released from the plane by pouring them into a hopper and pulling the plug while passing over the lake. Studies have shown that small fish can withstand a freefall up to 800 feet without harm... providing they land in the lake. We have a cost-share agreement with the U. S. Forest Service, utilizing helicopters which they have on contract during the fire season. Here again, we use the plastic bags to transport fish. Except for those which have self-sustaining populations, we try to schedule lakes for stocking at least once in 3 years. The number of alpine lakes stocked each year varies between 150 to 200 and about 40 percent of these are planted by helicopter.

Fishing pressure on Idaho high lakes increases each year. Much of this has been stimulated by our publication on mountain lakes which provides maps and information on some 600 lakes. Over 100,000 copies of this booklet have been distributed in recent years. Personally, I feel we have reached a
saturation point at many of our wilderness lakes and instead of spoon-feeding
details to fishermen on how to find these lakes we should be burning our maps
and discouraging the Forest Service from maintaining high trail standards to
alpine lakes.

Techniques in maintaining good fishing in mountain lakes have come a
long way since the days of mules and milk cans. Yet we have still much to
learn about the ecology, chemistry, and physical features of alpine lakes
and their inter-relationships. Proportionately, when you consider the total
number of fishermen statewide, the interest and use of mountain lake fisheries
is small, but it has increased tremendously in the past 10 years. Mountain
lakes have, and will continue, to be a challenge to man, beast, and machine.
PRELIMINARY STATEWIDE POLICY PLAN FOR MOUNTAIN LAKES IN IDAHO
RESIDENT TROUT MAJOR PROGRAM -- MOUNTAIN LAKES

There are six species or races of fish included in the mountain lakes resident trout major program. These include; rainbow trout, Yellowstone cutthroat trout, Westslope cutthroat trout, brook trout, California golden trout, Dolly Varden trout and grayling.

Some of these fish are found in all geographical areas of Idaho. Habitat is restricted to high elevation lakes. Present and projected habitat is shown in the table below. High mountain lake habitat is contained almost exclusively within lands controlled by the federal government. _______ percent of Idaho resident and nonresident anglers express a preference for this fishery. Approximately _______ fisherman days are spent in high mountain lake angling. This amounts to _______ percent of total fisherman days effort in the State.

PROBLEMS AND STRATEGIES

Problems -- Shallow, productive lakes are subject to periodic winterkill of fish.

Strategies -- Develop programs of mountain lakes inventory to collect data on physical features, fish populations and fish survival.

Problems -- High angler use on some lakes has reduced fishing quality (size and numbers of fish) and caused environmental damage to trails, adjacent alpine meadows and lake shorelines. Use of trail machines and 4-wheel drive vehicles and domestic livestock grazing and vegetation trampling and timber cutting conflict with aesthetic values of mountain lake settings.

Strategies -- Suppress publication of maps, articles and information on specific lakes to reduce "people" impact and maintain aesthetic and fishing quality. Maintain close liaison with the U.S.F.S. and recommend guidelines to control angler use, livestock grazing, off-road vehicles, trail development and timber practices in mountain lake areas.

Problems -- Basic knowledge of mountain lake ecology is generally lacking.

Strategies -- Conduct, sponsor and encourage research on mountain lake ecology.

Problems -- Better data are needed to determine optimum stocking rates (fish/surface acre) and stocking frequencies on individual lakes.

Strategies -- Conduct research to determine optimum stocking rates and frequency as related to lake productivity.

Problems -- Overpopulation of stunted brook trout or other fish species preclude establishment of a preferred fishery in some lakes.

Strategies -- Employ chemical rehabilitation (partial or complete) of lakes containing stunted or undesirable fish populations.
Problems -- Better management data are needed regarding fishermen distribution, harvest and catch rates.

Strategies -- Develop programs for data collection on fishermen distribution, harvest and catch rates.

Problems -- There is a lack of expression by fishermen as to species preference in mountain lakes.

Strategies -- Conduct opinion surveys to determine angler species preferences.

POLICIES

1. Lakes which "winterkill" with a frequency greater than once in four years will not be stocked.

2. Lakes requiring maintenance stocking will be planted at least once in three years.

3. The Department of Fish and Game will not publish maps, articles or detailed information on specific lakes or lake basins.

4. Brook, brown, Dolly Varden and mackinaw trout will not be stocked in mountain lakes.

5. A diversity of suitable species will be maintained in the development of stocking programs.
HIGH LAKE MANAGEMENT IN SURROUNDING STATES

The Chiefs of Fisheries in six western states were asked to supply information relative to their management of high lakes in their state. This information is summarized in this section.
CALIFORNIA

I. California has 3,316 high lakes in the Sierra Nevada and Klamath mountains.

 A. Approximately 75% of the lakes are in the National Park or wilderness area and subject to federal management policies.

 1. About 1,558 lakes are within the four major National Parks and they are not allowed to utilize aerial stocking (Policy - return parks to natural condition).

 2. Some 1,200 lakes are in wilderness areas but may be aerially stocked with limitations.

II. Stocking

 A. Rate = 100-200/SA.

 B. Frequency = 1-4 years.

 C. Size = R = 15-20/oz. or 240-300/lb.

 D. Species = 40-60% rainbow (remainder brk, ct, gldn, broun).

 E. Mostly fixed wing.

III. Philosophy

 A. Provide quality angling experience in keeping with the high aesthetic quality in which they are found.

 B. Provide variety.

IV. Use Study

 A. Approximately 60% of users did not fish. The remaining 40% included fishing tackle but only 5% cited fishing as the primary motive for their visit with 34% giving fishing as a secondary reason.

 B. About 94% would have made the trip without fishing but did indicate that fishing was an important value.
MONTANA

I. High lakes are important but are not given a high priority.

II. No state policy -- management is left to the individual biologist.

III. Stocking
 A. Rate - variable.
 B. Frequency - 3 years.
 C. Species - Yellowstone cutthroat.
 D. Most with fixed wing - some helicopter.

IV. Regulations
 A. Year-round.
 B. 10 fish or 10 pounds.
 C. Brook lakes - bonus 10 pounds.

V. Mountain Lakes Booklet
 A. No statewide booklet.
 B. Very rough booklet for various groups of lakes in cooperation with USFS.

VI. Use
 A. USFS furnishes some information on pressure from their trail sign-in program.
 B. Value of this information is not known.

VII. Philosophy
 A. They are trying to get away from stocking as much as possible.
 1. Self-sustaining populations where possible.
 2. May be brook in other situations.
NEVADA

I. Only 30 high lakes of which about 20 are considered fishable.

II. Very low emphasis and will probably continue in this vein.

III. Stocking

A. Rate = about 1,500/lake (100-300/SA).

B. Frequency - 4-5 years.

C. Species

1. Brook - occur in most lakes.

2. Rainbow - stock in overpopulated lakes (they feel rainbow can compete favorably with overabundant brook trout populations).

IV. Publicity

A. Angler guide for Elko County with special section on mountain lakes.

B. Angler use in the high lakes is increasing each year and the past practice of furnishing information to outdoor writers for articles in national magazines is no longer necessary, if it ever was.

Department files should be closed as a reference source of information for these writers.
I. Approximately 700 high lakes.

II. High lakes are a vital part of the state's fisheries programs but do not receive their share of attention.

III. Stocking

 A. Rate - 150/SA.
 B. Frequency - Annually (450-500), Biennially (remainder).
 C. Species
 1. Most with brook.
 2. Rainbow in lakes with better growing conditions.
 3. Cutthroat used experimentally - no supply.
 4. Golden did not work out well.

IV. Additional emphasis in these areas

 A. Annual stocking, especially in marginal lakes.
 B. Definite management objective by lake or lake group.
 C. Classify lake productivity by:
 1. Elevation
 2. Depth
 3. TDS
 4. Conductivity
 D. Annual update of color aerial photos for stocking.
 E. Expand use of high lake creel cards.
 F. Try to find a successful inland cutthroat.
 G. Try to budget district biologist's work load to allow additional time to high lake management.
I. Habitat

A. Lake types

1. Cirque Lakes
 a. Seldom larger than 20 SA or 40 feet.
 b. Elevation = \bar{x} 6,300 feet; $r = 3,500$ - $7,600$ feet.
 c. Source = surface runoff and snow melt within the cirque basin.
 d. Ice free period = \bar{x} 3.75 months (3rd week June - 2nd week October).
 e. Somewhat protected from sun and wind.
 f. Optimum trout temperature (55° F) may occur during 1 or 2 months.
 g. Water chemistry generally acidic or neutral

2. Paternoster Lakes
 a. Larger, deeper lakes.
 b. Elevation = \bar{x} - 3,000 feet.
 c. Source = larger watersheds than small basins.
 d. Ice free period \bar{x} = 5.5 months (early to mid-May - 4th week in October).
 e. Less protected from sun and wind.
 f. Optimum trout temperature (55° F) may occur during 3 months.
 g. Water chemistry generally neutral or basic.

II. Stocking

A. Rate -

1. Cirque Lake - 100/SA.

2. Paternoster Lake - 150-200/SA.
B. Frequency - 3-5 years (depends upon natural reproduction and exploitation).

C. Species

1. Cutthroat is preferred species in Cirque Lakes.
 a. Better growers (condition) - (lakes where cutthroat and rainbow co-exist show this).
 b. Aesthetic qualities.
 c. Cutthroat mature at 3 and 4 (Rb at 2 or -3) and thus have from 1-2 more years to grow before they experience the rigors of spawning.
 d. The early timing of cutthroat spawning is a valuable adaptive feature to the short alpine growing season.

2. Rainbow is preferred species in Paternoster Lakes.
 a. The richer environment is better suited to rainbow.
 b. Their later spawning is not such a factor in lakes with a longer growing season.

3. Brook - not recommended for stocking in Cirque Lakes.
 a. Ability to reproduce naturally at excessive rates.
 b. Pure mass of brook flesh causes other species to do poorly when in combination.

4. Dolly Varden
 a. Do not grow as rapidly as rainbow and are not as abundant.
 b. They provide a variety that is welcomed by anglers.
 c. Harder to catch and may escape the fishery and reach trophy size.

D. Helicopter

E. Size - smaller than 300/1b. when dropped from fixed wing (larger fry suffer greater mortality).

F. Consistency

1. Too many people utilized who don't know the country well enough and stock wrong lakes.
2. Fixed wing drops have higher mortality and therefore more fish than needed packaged to compensate.

Favorable conditions = overstocked; unfavorable conditions = understocked.

3. Helicopter stocking assures consistency.

G. Deadline

1. August 15 deadline should be imposed since early September seems to be the time when alpine environments begin to deteriorate biologically.

III. Regulations

A. Present

1. Limit = 12 fish.
2. Minimum size = 6 inches.

B. Proposed (where natural reproduction is low or nonexistent).

1. Limit = 3-5 fish.
2. Minimum size = 8 inches.
3. Packing out fish prohibited.

IV. Mortality

A. Natural mortality to Age III is 10%/year.

B. Natural mortality at sexual maturity (III or IV) increases to 25%/year.

V. Food

A. Midges are the basic summer diet in most high lakes.

B. Gammarus (scuds) are important where found.

1. Scuds have significant populations only in lakes that have at least 30 ppm total alkalinity and 18 ppm total hardness.

2. One of few food organisms that remain abundant after September 1 (enables fish to enter the winter with greater energy reserves).
3. Cirque lakes are generally too acidic for scuds.

4. Paternoster lakes generally provide water quality and vegetation for concealment.

5. High priority to introduce scuds into lakes that are suitable.

VI. Philosophy

A. Recreationists in high lakes seek first the recreational experience and fishing is a secondary consideration.

B. Recreation aspects rather than production is goal. (Aesthetics and quality out weigh sheer numbers).

C. Anglers prefer >12" fish (contacts and cards).

D. In lakes with infrequent visits (less than 50/year).
 1. Manage for maximum size.
 2. Stock less frequently and with species that does not reproduce at a high rate.

E. One age class grows better than several in the lake at the same time.

VII. Lake Inventories

A. Photos
 1. Aerial from USFS.
 2. Slides and/or black and white (camera).

B. Estimated volume of tributaries (<5 cfs).

C. Maximum depth - calibrated line and rubber boat (17#)

D. ̅ depth - visual observation, morphology, and several soundings.

E. Water transparency (Secchi disc).

F. Temperature (thermometer) avoid inlet areas.

G. Water Quality - pH, DO, total alkalinity, total hardness (Hach set).

H. Aquatic plants, invertebrates, fish.
1. Abundance
2. Species composition
3. Distribution

I. Fish

1. Growth
2. Age composition
3. Feeding habits

J. Fish Collection

1. Sport gear
2. Gill net
 a. 100' x 5' with 5-20' panels ($\frac{1}{2}''-3/4''-1''-1\frac{1}{2}''-1\frac{3}{4}''$).
 b. 60' x 5' with 4-15' panels (3/4''-1''-1\frac{1}{2}''-1\frac{3}{4}'').
 c. Small mesh end to shoreline and perpindicular to shoreline.

K. Collections

1. Scales
2. Otoliths
3. Stomachs (sample jars with formalin)
In general, the productivity of a lake is affected by: (1) geological conditions (relating to the chemistry and topography of the soil); (2) water chemistry, which is related to geological conditions; (3) climate (sunshine, precipitation, and inlet and outlet flows); (4) geographic location (altitude); (5) morphometry, as evidenced by depth, form of bowl, and proportions of deep and shallow water; (6) size, a small lake, other things equal, being more productive in proportion to volume than a large one; and (7) condition of maturity (eutrophication) (Cummins 1973).

The small, rockbound lakes among the steep cliffs at the head of glacial valleys are called cirque lakes and represent the most common type of high lake. Cirque lakes are often enclosed on 3 sides, forming spectacular amphitheaters that block direct sunlight exposure to lake surface for large portions of the day and protect the lake surface from strong, unidirectional wind currents. These lakes are seldom larger than 20 surface acres or exceed 40 feet in depth. They range in elevation from 7,600 feet (Libby Lake) to 3,500 feet (Round Lake), and average approximately 6,300 feet in elevation. Surface runoff of melting snow within the cirque basin itself is the primary source of water for these lakes. Many of the cirque basins have thinly developed soils which support subalpine conifer trees and understory, while others are completely rockbound and snowbound (Williams 1972).

Paternoster lakes differ from cirque lakes in that they are larger, deeper, have much larger watersheds, are much less protected from sunlight and wind currents, have significantly longer ice free periods, support more highly developed soils and denser stands of vegetation, and average about 3,000 feet lower in elevation.

The paternoster lakes normally lose their ice cover in early to mid-May depending on the snowpack depth and meteorological conditions. The average opening date of all lakes classified as alpine lakes was the 3rd week in June. The average ice-up date for alpine and paternoster lakes studied in 1972 was the second week and fourth week in October, respectively. Thus, ice free periods of 3.75 and 5.5 months occur in alpine and paternoster lakes. With an average ice free period of 8.0 months (mid-March to mid-November), the average lowland lake growing season exceeds that of the alpine and paternoster lakes by 4.25 and 3.5 months, respectively.

Optimum temperatures for salmonid fishes has been found by many researchers to approximate 55°F. Optimum temperatures in alpine lakes may occur for some sheltered, high elevation cirque lakes during 1 or 2 months out of the year and for 3 months for some of the paternoster lakes.

The hydrogen ion concentration of true alpine lakes varied from slightly over 6.0 to 7.5 and averaged 6.5 (Figure 33). The pH values of the paternoster lakes varied from slightly less than 7.0 and 8.0 and averaged 7.5.

1/ This portion of this report consists of material abstracted from reports by Washington State Game Department biologists James L. Cummins, James M. Johnston and Ken Williams.
It is interesting to note that while lowland lakes achieve maximum productivity by recycling essential nutrients to the surface water during the spring and fall "turnover", alpine lakes achieve maximum productivity by never "turning over". If alpine lakes underwent complete mixing, the loss of nutrients from the lake during the spring runoff, when the water mass would be undergoing maximum flushing due to the heavy runoff, would far outweigh benefits accrued by distributing the critical nutrients near the surface (Williams 1972).

Angler Preference

Examination of High Lake Fishing Report cards and personal communication with high lakes anglers has convinced me that high lake fishermen generally prefer large size to large numbers of fish. The high lake fisherman's dream is to fish a remote lake that supports lunker fish. Quality not quantity should be the goal in all but the most heavily fished lakes (Cummins 1973).

The average and above average high lake fisherman has come to the conclusion that it just isn't satisfying to hike 4 to 8 hours into a remote lake and then be rewarded with a catch of many small fish, most of which are under 8 inches in length. As a rule he voices his distain for these small fish and proclaims his preference for a few trout greater than 12 inches in length. Unlike his counterpart who fishes the lowland lakes, and has a primary goal of numbers, the backpacker would prefer to sacrifice numbers for increased size. He is seeking the remoteness of the high country with the hope of getting away from the crowds and the dream that his next sojourn will take him to that lake where the big ones grow.

There is a very practical side to the aesthetics of this desire for larger size fish. If the angler catches a limit of small fish, what is he to do with them -- he can rarely consume them all during his short stay and he knows from experience that they will hardly be fit to eat by the time he packs them out. If he releases the fish back into the lake the stunting problem will just be prolonged (Johnston 1973).

Stocking Formula

High lake populations generally fall into three categories: (1) self-sustaining populations that need no maintenance plants, (2) populations that spawn successfully but occasional plants are necessary, (3) fish populations that do not spawn successfully and consist entirely of planted fish.

Lakes that support only planted cutthroat or rainbow can be managed either to produce maximum numbers or maximum pounds of fish. It is evident that a management goal is necessary before stocking procedures can be formulated (Cummins 1973).

A stocking formula has at least 5 facets: (1) stocking rate (number of fish per surface acre), (2) stocking frequency in years, (3) type of fish planted, (4) size of fish planted (number of fish per pound), and (5) the time of planting (Williams 1972).
Stocking Rates

Throughout the management recommendation sections of this report I have recommended that stocking rates not exceed 100 fish per surface acre. With a few exceptions, I seriously doubt that most oligotrophic lakes would be overstocked at that rate, assuming that natural reproduction is nil. Having higher carrying capacities, the stocking rate recommended for the paternoster lakes should be increased to 150 or 200 fish per surface acre.

Actually the stocking rate in terms of surface acres is misleading in that it implies that the fry distribute themselves over the surface of a lake. The fact is that trout fry remain in close association with the upper littoral until they attain sub-legal size (4 or 5 inches). Thus a shallow 10-acre lake may be understocked with fry at 100 per surface acre, whereas a deep 10-acre lake may approach overstocking. Note that the converse is true with adult carrying capacities, however. In those cases where some natural reproduction is taking place but supplemental plants deemed necessary, I usually did not recommend altering the stocking rate but merely to reduce the stocking frequency (Williams 1972).

Examination of planting levels and growth rates clearly show that fish size can be controlled by manipulating planting rates. The relative productivity of each lake must be determined to derive at the best stocking formula. Although I have recommended that stocking rates not exceed 100 fish per surface acre, realistically planting levels should probably range from about 50 to almost 200 fish per acre depending on productivity capabilities of individual lakes. Comparison of planting records and fish growth and abundance indicate that the general stocking formula of (100 fish/acre) provides an excellent fishery for quality fish. Lakes planted in excess of 200 fish/acre do not appear to provide a better fishery (numbers of fish caught) but fish are small compared to lightly planted lakes (Cummins 1973).

Stocking Frequency

Recommended stocking frequencies range from three to five years depending on the extent of natural reproduction and exploitation rates. Stocking frequencies must be increased when harvest rates increase, but must never exceed the length of time to produce legal sized fish. This usually requires two years. Since fry remain in the shallow littoral regions until they attain legal or sub-legal (4-5") size severe competition will result if fish are planted frequently. Also, competition between several age classes results in decreased growth rates and condition of larger fish. For example, the net energy gained from 15 midge pupae by a five-inch fish is much greater than the energy gain by a 14-inch fish. Small fish have an advantage over large fish when the food supply is limited (Cummins 1973).

Type of Fish Planted

In discussing the merits of each trout species in the true alpine environment, the reader probably has already concluded from previous discussions that the cutthroat is the best adapted species. The superiority is manifested by condition and aesthetic qualities rather than growth in length in many cases. However, in those lakes where cutthroat and rainbow co-exist
and samples of both species were obtained (Lower Crater and Middle Oval Lakes), the cutthroat grew faster, were more robust, and their appearance more aesthetically pleasing than their rainbow peers.

How the two species compare in the most impoverished alpine environments is clearly illustrated by the growth rates and conditions of cutthroat in Cutthroat Lake and rainbow in Scheelite Lake. The predominant age class in both lakes was age -6. The rainbow average 8.1 inches in length, 2.2 inches more than the cutthroat (5.9 inches), but the rainbow were extremely emaciated and near starvation. The smaller cutthroat, on the other hand, were in fair to good condition.

Moreover, the ability of brook trout to reproduce naturally at excessive rates and to expand their distribution rapidly make the inclusion of this species into the alpine fishery program a risky one and one that cannot be recommended for the alpine lakes in the Okanogan National Forest.

The relatively rich, mid-elevation patronoster lakes are much better suited for rainbow. In these lakes the condition and aesthetics of rainbow are commensurate with their growth in length, which exceeds legal length by the end of the first summer and trophy size (15 inches) in 5 years.

The patronoster lakes (except Big Hidden Lake) are also the natural home of Dolly Varden. These fish don't grow quite as rapidly as rainbow and they are not as abundant (Black Lake excepted), but the variety they provide to the creel is well received by anglers. Only in Black Lake are Dolly Varden numbers sufficient to support a viable fishery. Because of their nocturnal, piscivorous feeding habits, many fish escape the fishery and reach several pounds in weight, particularly Black Lake. Some anglers fish exclusively and unconventionally for these trophies.

These data show that rainbow, cutthroat, brook trout in alpine environments are opportunistic feeders, having no reservation about taking their food from the bottom, surface or pelagic areas. Dolly Varden, on the other hand, seemed to restrict their feeding to the substrate, although some juveniles consumed surface organisms. The slow growth of this species is probably partially due to their exacting feeding habits.

Certainly one of the most beneficial adaptation to severe alpine environment is late maturation. Rainbow mature at age 2 or more commonly age -3, and the cutthroat at ages 3 and 4. Thus, cutthroat have from 1 to 2 more years to grow before they experience the rigors of spawning.

The traumas of spawning cannot be overemphasized and the severity is accentuated in alpine waters. With such short growing seasons, alpine trout can ill-afford to cease feeding for 2 or 3 weeks to spawn. Not only do they cease feeding, they also expend more energy than normal by the physical act of digging the nest and protecting it. Furthermore, the energy incorporated in gonadal tissue could have been used in somatic tissue for body growth instead. Egg retention from the incomplete extrusion of eggs during spawning and subsequent reabsorption is a stressful and even fatal (to females) aftermath to spawning.
Species which are ill-adapted to the austere alpine environment show their inferiority most dramatically during spawning by the degree to which they suffer and the length of recovery time. The rainbow seem particularly troubled by spawning. They spawn later than cutthroat, which bisects their growing season so that at a time when they should be feeding heavily they cease feeding and engage in spawning. The early timing of cutthroat spawning is a valuable adaptive feature to the short alpine growing season. By spawning soon after ice-out they take advantage of the lull in the appearance of aquatic invertebrates immediately after ice-out and re-enter the lake when food is more abundant. When Middle Oval Lake was sampled on August 14, the cutthroat had completed spawning and were feeding heavily in the lake. Most rainbow were still on their redds and the few that were not feeding, while taking cutthroat eggs at Twin Lakes, cutthroat were observed feeding heavily prior to and immediately after their eggs and sperm had been removed. While still in holding pens and groggy from anaesthesia, any split eggs were immediately consumed. Conversely, rainbow seem to lose their appetites during spawning in alpine environments.

A large percentage of rainbow females retained the bulk of their eggs, which compounds and prolongs their stress. I don't recall ever having seen a spawned-out cutthroat with retained eggs (Williams 1972).

Aesthetically the cutthroat is a superior fish. They become brilliantly colored, particularly the males, in contrast to the dark coloration of sexually mature rainbow males. On hook and line the lethargic struggle of spawning or spent rainbow cannot match that of cutthroat at their weakest condition. Post-spawning recovery rates are very rapid for cutthroat, and it is difficult to tell externally whether or not a fish has spawned. Rainbows remain dark, gaunt, and sluggish for most of the summer before they recover to a bright silvery condition and display some semblance of their fighting qualities for which they are renowned in lowland lakes. The speed of their recovery seems to depend on the fertility of the lake. For example, Quartz Lake rainbow achieve better condition much earlier in the summer than those which inhabit Upper and Middle Oval Lakes. In the most oligotrophic lakes, rainbow never fully recover from the trauma of spawning.

Size of Fish

The size of fry planted in alpine waters is paramount, and an area that can be improved over past practices. A policy of not releasing fish until they weigh a minimum of 300 fish per pound is recommended. Fish at this size seem better able to cope with the rigors of the alpine environment than smaller fry. Also, the length of time required to produce legal size fish can be cut one year by planting advanced fry.

Time of Stocking

Fish should be planted between July 15 and August 15 depending on meteorological conditions which effect a lake's thermal properties. Surface temperatures should not be less than 10°F below the maximum temperature but should not exceed 65°F in the case of homothermal lakes. Food production usually peaks between July 15 and August 15. The August 15 deadline will allow fish a two or three week period to adjust before food production decreases in early to mid-September.
Early September seems to be the time when alpine environments begin to deteriorate biologically, and water temperatures drop almost 30°F per week. An August 15 stocking deadline should be imposed. This gives the fry a 2- to 3-week period in which conditions are favorable for adjustment and survival (Williams 1972).

Planting Methods

Unquestionably the single most important technique in high lakes management and one that virtually assures consistency is the use of helicopters to stock alpine lakes.

A final recommendation concerning helicopter plants is that planting shall not take place in the absence of a person who is intimately familiar with the lake or lakes to be planted. This may seem trite, but a consistent program requires that a group of fish designated for a particular lake reach that lake.

When planting with fixed wing craft, more fish were packaged for release than a given lake could actually support in anticipation of some mortality during the freefall. Thus, under favorable conditions the lake was overstocked and understocked during unfavorable ones, with mortalities ranging from 0 to 100 percent. This certainly is not conducive to important goals of consistency (Williams 1972).

Johnston (1972-1973) and Williams (1972) have stressed the point that use of helicopters to stock high lakes assures consistency. There is little chance of significant mortality if helicopters are used to plant fish. When planting with fixed wing aircraft, it is probable that many fish do not enter the lake, and that there is some mortality associated with the freefall. This is not consistent management (Cummins 1973).

Natural Mortality

Based on my own observations of natural mortalities in the high lakes on the Olympic National Forest, I have concluded that natural mortalities from planting to age III average approximately 10 percent per year. At sexual maturity (age III or IV), natural mortalities increase to about 25 percent per year (Johnston 1973).

Regulation Considerations

Despite their dissimilarities, high lake and lowland lakes are under the same management program. Alpine lakes are small and biologically unproductive and their annual production of fish biomass are mere fractions of those produced by lowland lakes, yet a limit of 12 fish is permissible in both types of lakes. A given alpine lake may yield excellent catches for 10 fishermen per year and be fished out by 30 fishermen. Low numbers of alpine lake recreationists and insufficient enforcement personnel in the past made it impractical to develop a high lake management plan drastically independent from the lowland lake management plan. Inadequacies in the program will manifest themselves as angling pressures mount. Some inadequacies are beginning to turn up and more are sure to follow.
Although the minimum size limit is 6 inches, the unwritten quality standard that we strive for in the Okanogan County lowland lakes is to produce 9 to 10 inch age -1 fish, the fishery is based almost entirely on age -1 fish, as the percentage of fish that survive the fishery is extremely low in most cases. By necessity high lake fisheries are based on several age classes of fish, since the time required to produce a 9-inch fish takes several years in many instances. With liberal limits and increasing pressure, larger, older fish will be removed. The end result will be that as soon as the fish reach legal size they will be harvested. So the paramount difference between the two environments is the low lakes can produce aesthetically acceptable fish between seasons whereas the high lakes require several years. Now back to the question of quality. Are 6-inch fish acceptable and should our program stress production? I say no for the reason that alpine clientel have different motives and attitudes about fishing than their typical low lake counterpart. These recreationists seek the ultimate outdoor recreational experience, and fishing in a majority of cases is a secondary facet of their trip. To them fishing is recreation, and aesthetics and quality outweigh sheer numbers. What does an angler do with a legal limit of 12 fish? He certainly can't eat that many nor can he pack them out. He may share them with the non-fishermen in his party, but is this practice fair to subsequent anglers whose angling quality is diminished? I feel that the recreation concept of fishery management should be the guideline for our high lakes program rather than strictly production. The catch limit should not exceed the number of fish that the average adult would normally consume (3 to 5 fish), and all fish should be utilized in the high country. Packing fish out should be strictly prohibited. These regulations would maintain good fishing for longer periods of time under higher fishing pressure and fish in the creel would be larger (Williams 1972).

Utilization of Gammarus

The circum-neutral pH and moderate carbonate contents of the paternoster lakes appear to be ideal for *Gammarus*. The only alpine lakes to contain scuds (Beaver, Middle Oval, Quartz, and Tiffany) had pH values that approached neutrality or were basic and had the highest carbonate contents. The majority of alpine lakes are probably too acidic and have too little carbonate to support scuds. Cover is another limiting factor because they are thigmotactic and react negatively to light. Consequently, they remain hidden in vegetation and under and between debris and rocks during the day.

Scuds are one of the few food organisms which remain abundant after September 1. In essence, lakes with scuds have longer growing seasons, enabling the fish to enter the winter with far greater energy reserves than fish in lakes which have little food available in the fall. This is critical for sexually mature fish which use these reserves for the development of reproductive tissue as well as to sustain themselves while they lie under the winter ice. Obviously, the condition of a fish after ice-out and spawning is governed in large part by its condition the preceding fall, and those lakes containing scuds produce the highest quality alpine trout (Williams 1972).
Data Collection Assistance

I doubt that there is a fishery biologist in the State that would not give just about anything to spend each summer in the alpine lakes gathering fishery data. However, because of other pressing responsibilities, personnel shortages and budgetary limitations, not to mention the great number of high lakes (Wolcott lists 1,567 lakes lying about 2500 feet elevation in Western Washington alone), it has been impossible for Game Department biologists to visit each lake. For several years now these biologists have depended upon the return of High Lake Fishing Report cards for management data.

Although the information contained on the High Lake Fishing Report card is resulting in formulation of some management decisions, the cards function is limited. At best they provide sketchy information about the fishery in a particular lake, and this information is probably not without bias. Successful anglers have more of a tendency to report information than their unsuccessful counterparts (Carline 1972). Additionally it is not uncommon to receive conflicting reports (no fish vs. lots of fish) and to have long period of time between reports. The report cards also do not provide enough space to record all the desirable information, nor are the fishermen trained to observe or collect more technical information.

For the aforementioned reasons, now appears the time to initiate an additional reporting form and procedure, that can be distributed to select groups or individuals, and is designed to provide usable biological information that will aid the fishery biologist in making sound management decisions.

In content the new form must be self-explanatory and require little, if any, additional training for successful application in the field.

It is recommended that such a form be distributed to the following groups or individuals:

Trailblazers
Washington High Lakers
U. S. Forest Service District Rangers
Selected Game Department personnel other than biologists
Selected individuals that frequently send in High Lake Fishing Report cards.

It would be wise to designate to these people the names of specific lakes that information is desired from, and then encourage them to seek out other lakes if they have the time and inclination.

A recommended format for this new reporting form is found on the following pages.
Look for ice marks on rocks along the shoreline of the lake and any other indications of lake level fluctuation. Estimate how many feet the lake level drops each summer. This determination should be made in August if possible.

Are there any aquatic plants growing in the lake or sedge grasses along the shoreline of the lake? [] How extensive is this plant growth (in square feet)

Now focus your eyes between the surface and the bottom of the lake, near shore, where the depth is at least 2 feet. Do you see any small red organisms suspended in the water column? [] These are red copepods which are a little larger than a pencil dot (#) and move in short one-eighth inch spurts.

Remarks

Using a 1-foot square piece of window screen, go to the shallows of the lake where either sedge grass protrudes into the water or where rubble less than 3" in diameter is found. Stir up the area with your hand or foot and before the debris cloud settles, run the screen through the disturbed area and lift out to examine. Look for the presence of freshwater shrimp. See drawing.

[Drawing]

Shrimp

Remarks

Collect one glass pint-jar of the lake water at the outlet end of the lake. Label the bottle with the name of the lake, Sect., Town, and Range, and the date. Deliver this water sample within 15 days to the Game Department's Regional Fish Biologist that has management responsibility for the lake sampled (See Game Dept's Fishing Regulations pamphlet for the Regional Office address).

How long a hike was it to this lake from the nearest road?
Miles
Hours

How many fishermen would you estimate fish this lake each year? You can get a rough idea by talking to the U.S. Forest Service's local District Ranger (or his Resource Staff) and ask him how many people visit the lake each year. Divide his estimate by 4 to arrive at an estimate of fishermen.

Remarks

Take a picture of the lake from a high angle and attach print, negative, or slide to this report.

---------Data End---------

Deliver this form, when complete, to the Regional Fish Biologist responsible for the management of the lake along with the aforementioned water sample, or mail the form to:

Fisheries Management Division
Department of Game
600 N. Capitol Way
Olympia, Washington 98501

37
Did you observe any fish in the lake smaller than 6 inches?
If so, were there any fry along the shoreline or other indications that the fish are naturally spawning? The fry would be most likely seen in August or September.

If natural spawning occurs in the lake, a tributary, or the outlet, and you have personal knowledge of the location, make a rough sketch below of the spawning site in relation to the lake and include the following estimates:

Average stream width (ft) ____________
Average stream depth (ft) ____________
Percent of the stream bottom covered with 1-inch or less diameter rocks in the spawning area ____________

Make a rough drawing of the lake and sketch in the 10-foot contour line showing the extent of the shallows. Record your estimation of distance in feet of the farthest point this contour line extends into the lake. Refer to the example below.

Between the shoreline and the 10-foot contour, note the makeup of the lake's bottom, i.e., solid rock, larger than 10" diameter boulders, irregular shaped rubble, rounded gravel, silt and/or mud. This information can be illustrated on another lake drawing. See example.
High Lake Data Collection Form

Lake ___________________ Location: Sect. __________ Town. _______ Range _______

Date of survey ___________ County _______________________

Name, phone number, and organization of data collector ____________________________

Stocking record if known:
Month/Year __________ Species ______ Number ______ Size ______ Hatchery Source ________

Species of fish now in lake ___

If more than one species, which one dominates? _________________________________

If fishing, what did you use: flies, worms, eggs, flatfish or lures? ________

Record your catch data in the following table, plus data collected from any other
anglers you could check. You are Angler #1.

<table>
<thead>
<tr>
<th>Angler</th>
<th>Total Fish</th>
<th>Time Fished</th>
<th>Sizes of Fish (Nearest 1/4 Inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RB CT EB</td>
<td>(Nearest 1/2 Hr.)</td>
<td>RB CT EB</td>
</tr>
<tr>
<td>#1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Note: Attach supplemental sheet if more than 3 anglers checked)

Stomach contents of fish (particularly look for red mass of copepods and/or
freshwater shrimp) ___

What is the flesh color of rainbow or cutthroat trout if they are found in
the lake: pink or white? Place an (X) in appropriate space.

Rainbow

<table>
<thead>
<tr>
<th><12"</th>
<th>>12"</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>W</td>
</tr>
</tbody>
</table>

Cutthroat

<table>
<thead>
<tr>
<th><12"</th>
<th>>12"</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>W</td>
</tr>
</tbody>
</table>

Note: (>) = greater than, (<) = less than

Do you consider the fish to be fat, skinny, or of average weight for their length?
Rainbow _______________ Cutthroat _______________

Was there an accumulation of fat along the intestines or stomach of the fish?
Remarks __________________________

Did you find any parasites (tapeworms, cysts, etc.) in the fish? ________
Literature Cited

TYPICAL SURVEY OF A HIGH LAKE IN WASHINGTON

Lake: Bear County: Mason Elevation: 2500

Legal description: Section 29 Township 24N Range 4W WRIA 16

Drainage: Jefferson Cr. - Jefferson Lakes - L. Elk Lk. - Hamma Hamma R.

General exposure: N & S Adjacent land owner: U.S.F.S.

Date(s) of survey and inventory: 7/7/73

FIGURE 2

Photograph of the lake and remarks

Bear Lake, looking west, with approximately two-thirds of the lake in the photograph. The man is standing on the alluvial fan of inlet.

Refer to Figure 3 for aerial photograph of the lake.

Refer to Figure 4 for depth contour map of the lake.
BEAR LAKE

0.4 Surface Acre
Scale 1 inch = 66 feet

FIGURE 4
Lake Physical Data

Surface area at mean high water (acres) 0.4
Average annual water level fluctuation (feet) 4
Depth measurements for mean high water (feet): Maximum 10 Mean 6
Length of shoreline at mean high water (feet) 561
Percent of the lake's mean water level surface area under which the depth is less than 20 feet (%) 100 Area (acres) 0.4
Percent of the lake's mean water level surface area under which the depth is less than 10 feet (%) 85 Area (acres) 0.34
Percent bottom composition of the lake shoreward of the 10-foot contour line. Determination made at mean water level:

<table>
<thead>
<tr>
<th>Material</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedrock</td>
<td>1</td>
</tr>
<tr>
<td>Boulders</td>
<td>1</td>
</tr>
<tr>
<td>Rubble</td>
<td>1</td>
</tr>
<tr>
<td>Gravel</td>
<td>5</td>
</tr>
<tr>
<td>Sand</td>
<td>2</td>
</tr>
<tr>
<td>Silt</td>
<td>80</td>
</tr>
<tr>
<td>Detritus</td>
<td>10</td>
</tr>
</tbody>
</table>

Inlets: Total number 2 Number with continuous summer flow 1

Area of inlet (s) drainage basin (acres) 250

Dimensions of each permanent inlet and associated flow as measured 10 feet upstream from confluence with lake:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width (feet)</td>
<td>3.5</td>
</tr>
<tr>
<td>Average depth (inches)</td>
<td>3</td>
</tr>
<tr>
<td>Flow (cfs)</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Dimensions and composition of alluvial fan at the mouth of each permanent inlet:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width (feet)</td>
<td>15</td>
</tr>
<tr>
<td>Distance extending into the lake (feet)</td>
<td>30</td>
</tr>
<tr>
<td>Substrate composition</td>
<td>Gravel & Sand</td>
</tr>
</tbody>
</table>
Lake Physical Data (continued)

Inlets (continued): Remarks The permanent inlet (labeled #1) has a small fall 150 ft. upstream from lake, which limits further fish access.

Gradient (drop in feet for first 100 feet of horizontal distance) 15

Remarks The outlet of the lake goes underground during the summer months.

Refer to Table 1 and Figure 5 for temperature data. Refer to Table 2 for water chemistry data.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>61.0</td>
</tr>
<tr>
<td>2</td>
<td>60.0</td>
</tr>
<tr>
<td>5</td>
<td>55.5</td>
</tr>
<tr>
<td>10</td>
<td>50.5</td>
</tr>
</tbody>
</table>

TABLE 2. - The chemical characteristics of Bear Lake on July 7, 1973.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>mg/l (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen, dissolved</td>
<td>9.0</td>
</tr>
<tr>
<td>pH value</td>
<td>7.5</td>
</tr>
<tr>
<td>Alkalinity, total</td>
<td>15.0</td>
</tr>
<tr>
<td>Alkalinity, bicarbonate (HCO₃)</td>
<td>15.0</td>
</tr>
<tr>
<td>Chloride (Cl)</td>
<td>2.5</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>0.05</td>
</tr>
<tr>
<td>Hardness, total</td>
<td>15.0</td>
</tr>
<tr>
<td>Hardness, calcium (CaCO₃)</td>
<td>5.0</td>
</tr>
<tr>
<td>Hardness, magnesium</td>
<td>10.0</td>
</tr>
<tr>
<td>Nitrogen, nitrite + nitrate</td>
<td>0.0</td>
</tr>
<tr>
<td>Phosphate, ortho (PO₄)</td>
<td>2.5</td>
</tr>
<tr>
<td>Silica (Si)</td>
<td>1.0</td>
</tr>
</tbody>
</table>
 Biological Data

Aquatic vegetation (excluding phytoplankton) and sedge abundance:

<table>
<thead>
<tr>
<th>Type</th>
<th>Common or Latin Identification</th>
<th>Area Covered (sq. ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floating</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Emergent</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Submerged</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Sedge comments: Only scattered patches around lake's perimeter.

Atypical presence or absence, abundance or scarcity of potential fish food invertebrates or vertebrates:
The relative abundance of aquatic invertebrates in Bear Lake appears average, when compared against abundance in lakes that are known not to be overstocked with fish.

Fish species present in the lake and comments on their respective abundance: Tokul Creek cutthroat are present in Bear Lake. The total population numbers less than 150 fish.

Age classes and lengths of fish samples collected:

<table>
<thead>
<tr>
<th>Species</th>
<th>Age Class</th>
<th>Sample Number</th>
<th>Size Range (inch)</th>
<th>Mean Fork Length (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.Cr. Cutthroat</td>
<td>I</td>
<td>6</td>
<td>4.25 - 5.50</td>
<td>4.75</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>3</td>
<td>6.50 - 7.50</td>
<td>6.75</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>3</td>
<td>7.50 - 9.00</td>
<td>8.50</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>2</td>
<td>9.50 & 10.75</td>
<td>10.12</td>
</tr>
<tr>
<td></td>
<td>VII</td>
<td>3</td>
<td>12.50 - 14.50</td>
<td>13.50</td>
</tr>
</tbody>
</table>

Note: the above data indicates that the cutthroat planted in 1966 began naturally reproducing at age III.
Biological Data (continued)

Stocking record for the lake:

<table>
<thead>
<tr>
<th>Date</th>
<th>Species</th>
<th>Number Planted</th>
<th>Number/ Surface Acre</th>
<th>Number/ Pound</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/65</td>
<td>T.Cr. Cutthroat</td>
<td>1,028</td>
<td>Equivalent to 2570/acre</td>
<td>376</td>
<td>Shelton</td>
</tr>
<tr>
<td>7/66</td>
<td>T.Cr. Cutthroat</td>
<td>1,036</td>
<td>Equivalent to 2590/acre</td>
<td>259</td>
<td>Shelton</td>
</tr>
</tbody>
</table>

Note: The air plant made in 1965 is believed to have missed entering the lake. It would also be my guess that, judging from the population in the lake today, that a good part of the 1966 plant missed entry also.

Natural spawning (remarks on existing or potential spawning habitat and location, which species are spawning and with what degree of success):

This is the second high lake surveyed to date that contains a population of Tokul Creek cutthroat which find the environment suitable for natural reproduction. Most of the spawning is taking place at the mouth of the permanent inlet and on the alluvial fan. The success of the spawning is adequate to keep pace with natural and fishing mortalities, but not so successful as to result in stunting.

Fish pathology (were any lesions indicative of bacterial or viral infections, or endo- or ecto-parasites found associated with the fish sampled?):

None.
Photograph of fish sample and remarks

Tokul Creek cutthroat taken from Bear Lake. Fish are displayed from left to right in order of descending age classes: Ages VII, IV, III, II, and I respectively.

Fish stomach contents with the organisms listed in order of their decreasing volume within the stomach:

Caddisfly larvae and midge pupae.
Fish physiology:

<table>
<thead>
<tr>
<th></th>
<th>Species</th>
<th>T. Cr. Cutts</th>
<th>Species</th>
<th>N.A.</th>
<th>Species</th>
<th>N.A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat deposit in the viscera</td>
<td>Moderate deposits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flesh color (by species):

<table>
<thead>
<tr>
<th></th>
<th>Species</th>
<th>T. Cr. Cutts</th>
<th>Species</th>
<th>N.A.</th>
<th>Species</th>
<th>N.A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish < 12"</td>
<td>White</td>
<td>Fish < 12"</td>
<td>--</td>
<td>Fish < 12"</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Fish > 12"</td>
<td>White</td>
<td>Fish > 12"</td>
<td>--</td>
<td>Fish > 12"</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

Index of Condition: \[C = \frac{10,000 \times \text{Wt. in lbs.}}{\text{Length}^3 \text{ in inches}} \]

<table>
<thead>
<tr>
<th></th>
<th>Species</th>
<th>T. Cr. Cutts</th>
<th>Length</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Species</td>
<td>T. Cr. Cutts</td>
<td>14.5 "</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>Species</td>
<td>T. Cr. Cutts</td>
<td>10.75 "</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>Species</td>
<td>T. Cr. Cutts</td>
<td>8.50 "</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Additional biological remarks:

It is my belief that the cutthroat can spawn in this lake because, (1) the alluvial fan, on which most spawning takes place, does not become completely exposed during the egg incubation period, (2) the gravels that compose the fan are a good size for spawning fish and not compacted with sediments and silt, (3) the inlet which formed the fan is permanent and does not go underground prior to entry into the lake.
Factors Influencing the Fishery

Hiking distance to the closest road: ¼ mile (15 min. hike)

Future logging or road construction plans if known: None planned at this time in the immediate vicinity of the lake

Present fishing pressure: 10 anglers/year

Names of other managed lakes within a two-mile radius:
Goober Lake, Ellinor Lake, and Upper Jefferson Lake

Angler Reports

High Lake Fishing Report cards on record:

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Species</th>
<th>Number Caught</th>
<th>Average Size</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>None received</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Future Management

Bear Lake has an Environment Parameter Index of 45, which corresponds with a sustainable production capability of 9.5 lbs/acre/year. This indicates that no more than 95 fish should be planted in this half-acre lake if quality trout are desired.

Since natural reproduction is maintaining the trout population at a level above the capability of producing quality sized fish in three or even four years, Bear Lake should not be planted.
GEOMORPHIC AND OTHER PHYSICAL CONDITIONS AFFECTING
FISH POPULATIONS IN HIGH MOUNTAIN LAKES

by Dr. William S. Plattts

The high mountain lakes of five mountain systems of two Rocky Mountain provinces were studied and compared, in order to explore the relationships between the geomorphic and other physical factors and the success or failure of these lakes as fish habitats. In describing the study area, similarities and differences between the physical factors and fish biology of the mountain systems were defined. The defined heterogeneity would suggest that any relationships disclosed by the study would have general applicability by relating plural fish communities to a general geomorphic type or other general physical constant.

The high mountain lake basin formation type, the determinant of many essential parameters, was selected as the basin geomorphic feature to be studied for a correlation between a geomorphic type and the success or failure of the lakes as salmonid habitats. Five types of lake basin formation types were characterized, evaluated and compared: the cirque, the rock dam, the moraine, the landslide and the avalanche (Table 5).

A high positive correlation between the basin formation types and elevation intervals exists, and, in general, the distinguishing physical characteristics of the lake basin formation types are also a function of the elevation to a remarkable degree. Thus the average and maximum water depth, the water level fluctuation, and the coarse shoal bed material decline with a decrease in elevation and in the order of cirque, rock dam, moraine, landslide and avalanche, whereas the percent shoal area increases with a decline of elevation. The anomaly in this rule is the rock dam, and the reason for the deviation in this case is assumed to be insufficient sample size.

The chemistry of the lake basin formation types is also correlated, either positively or negatively, with the elevation in the same order - cirque, rock dam, moraine, landslide and avalanche. Thus alkalinity and hardness increase with a decrease in elevation, and pH and dissolved oxygen decrease. No such function is found in the case of CO2, however, since in CO2 both the moraine and the landslide type tend to be high (Table 5).

Fish species compositions among the lake basin formation types are widely divergent. This divergence is attributable primarily to fish management, which by initiating this divergence masks the relative effectiveness of the lake basin formation types upon fish productivity, since it appears that certain species of fish are better adapted to the high mountain lake environment than others. Comparison of four species of salmonids showed the golden trout excelling in physical condition the cutthroat, brook and rainbow, the cutthroat next in rank, the brook following the cutthroat and the rainbow trout at a much lower level of physical condition than the other three.

Comparison of the physical condition of the four salmonids within each lake basin formation type constructs a series from the most thriving to the most impoverished, which ranks the types thus: landslide, cirque, rock dam,
Table 5. A summary of the distinguishing physical characteristics of the high mountain lake basin formation types, the characteristics ranked quantitatively (1 to 5).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Cirque</th>
<th>Rock Dam</th>
<th>Moraine</th>
<th>Landslide</th>
<th>Avalanche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Elevation (feet)</td>
<td>10,986</td>
<td>9,550</td>
<td>9,190</td>
<td>7,706</td>
<td>7,504</td>
</tr>
<tr>
<td>Average Water Depth (feet)</td>
<td>25</td>
<td>5</td>
<td>10</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Water Level Fluctuation (Stable=4)</td>
<td>3.77</td>
<td>4.00</td>
<td>3.27</td>
<td>4.00</td>
<td>3.80</td>
</tr>
<tr>
<td>Shoal Area (% of Total Area)</td>
<td>51</td>
<td>87</td>
<td>83</td>
<td>84</td>
<td>92</td>
</tr>
<tr>
<td>Shoal Bed Material (% Coarse)</td>
<td>52</td>
<td>17</td>
<td>34</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>Alkalinity (ppm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>7.4</td>
<td>7.5</td>
<td>8.2</td>
<td>8.2</td>
<td>8.6</td>
</tr>
<tr>
<td>Hardness ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.O. (ppm)</td>
<td>10.0</td>
<td>10.0</td>
<td>9.1</td>
<td>8.7</td>
<td>9.0</td>
</tr>
<tr>
<td>CO\textsubscript{2} (ppm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

54
moraie and avalanche. If, however, compensation is made for differences in fish species composition and species adaptability, a different series is constructed, in which the moraine is shifted from 4th rank to first. A comparison between the two series shows that differences in species adaptability seems to be operative in the comparison between types, but that there are also differences that can be only explained as those initiated by a relationship between the lake basin formation type and the physical condition of the fish inhabitants of the type. A reversion to the correlation of certain physical properties at certain quantitative levels with particular lake basin formation types elucidates the rationale for such a relationship.

The excellence in fish physical condition within the landslide lake basin formation type is accepted as partial explanation of the high fecundity in the lakes formed by this type. On the other hand, the cirque lake basin formation type was placed at an adventitious disadvantage in such a comparison by completely lacking brook char within its fish population.
TROUT MANAGEMENT IN THE CALIFORNIA BACK COUNTRY

By

E. C. Fullerton, Director
California Department of Fish and Game

Let me begin by expressing strong agreement with many of the concepts and policies presented by the two federal panel members concerning protection of wilderness values. Certainly we in the California Department of Fish and Game can support the broad objectives of quality and naturalness in wilderness area management. The present emphasis placed by the National Park Service and U. S. Forest Service on perpetuation of natural aquatic ecosystems deserves the invitation, "welcome to the club". State fish and wildlife agencies have been resisting adverse influences on aquatic ecosystems for decades. With my usual lack of modesty, I'll even go so far to say we were leaders in the environmental movement in this country. Accordingly, many state wildlife agencies have been consistently strong advocates of establishing wilderness areas.

Mr. Griswold is right in indicating that points of difference among state and federal agencies on wilderness fishery management are not as great as points of agreement. But a few conflicts do exist and they have recently become significant. They must be resolved rather quickly. Otherwise, a long and productive climate of federal-state cooperation will be in substantial jeopardy.

To help put California's views on today's subject in perspective, let me describe briefly the resources at stake. The Sierra Nevada and Cascade mountains in our state are endowed with 2,316 lakes capable of supporting trout. Our four "natural category" national parks contain 1,558 of these lakes and

1/ Presented as part of a panel discussion on Management of Wilderness Water at a joint meeting of the International Association of Game, Fish and Conservation Commissioners and the American Fisheries Society, Las Vegas, Nevada, September 10, 1975.
1,028 are in 12 official wilderness areas. Thus, about 75% of a major type of natural aquatic ecosystem in the state is now subject to federal management policies. Virtually all of the remaining mountain lakes occur in national forests and many of these are in wilderness study areas that may eventually be subject to management constraints.

Thousands of miles of magnificent streams exist in our parks and wilderness areas, but no appreciable conflicts in management approaches for these waters have surfaced.

All of these mountain lakes and streams provide over a million days of quality fishing each year.

To the best of our knowledge, all of California's high mountain lakes were barren of fish when first visited by European man. Now, incredibly, a handful of people would evidently prefer to see them all return to a fishless state. That feeling is evidently shared by some federal personnel.

I wonder what the early-day explorers of our mountain wilderness, who exerted great personal effort to establish fish populations in those lovely, but barren waters, long before parks and wilderness were ever considered, might think about some of the concepts being talked about today. Even the Sierra Club was deeply involved in those pioneer fish stocking efforts.

Some back country California lakes are still barren; many lakes possess sufficient spawning habitat for good natural reproduction and provide satisfactory trout angling without stocking. But a sizeable number of lakes lack adequate spawning habitat and must be planted periodically to offer any angling opportunity to the ever-increasing number of backpackers. It is these lakes that are primarily affected by a few unrealistic philosophies and policies recently promulgated by the federal managing agencies.
Fish stocking as a management tool can take many forms. At present, in California's back country lakes, it mostly involves aerial plants of small fingerling rainbow and golden trout about every two or three years in some, but not all lakes that would otherwise be barren. In the two or three years required for these fish to reach catchable size, they become indistinguishable from naturally-produced trout. We're not talking about the put-and-take stocking of catchable-sized fish in waters with high angler use; we're not talking about stocking to achieve maximum sustained yields; and we're not talking about stocking every wilderness lake. What we are basically talking about is providing a high quality, traditional fishing experience with species that are indigenous to California's mountain country. It is difficult for us to envision how such management could be considered inconsistent with true wilderness or natural park values.

Whether they know it or not, the federal panel members today have advanced philosophies which, if fully implemented, would greatly reduce the state's ability to go on managing fisheries that most wilderness users are satisfied with. Perhaps these philosophies are appropriate for some regions of the nation, but we do not believe they're right for California or other western states. The department of the Interior tells us that it's their policy to restore the natural category parks to the condition that prevailed when first viewed by site men. Strictly applied in California, this means cessation of fish stocking. Carried out fully, this could mean complete eradication of trout in our lakes, since all lakes were originally barren.

The basis for this policy, we are told, was the 1963 Leopold report, which resulted from intense controversy over management of big game in national parks.
The Leopold report doesn't mention fish or aquatic ecosystems. It clearly and unmistakably deals solely with wildlife, primarily ungulates. However, Interior has applied, without qualification, the report's policy recommendations to aquatic resources. We strongly disagree with this application of the policy and have requested a variance for California in order to maintain fishing as a traditional use in natural category parks, as expressed in the original federal park act. The Park Act specifically says that recreation is one of the purposes for establishing national parks.

Another issue spotlighted today by both federal speakers is aerial stocking. California long ago dispensed with the inefficient, uneconomical, environmentally unsound horseback approach in favor of aircraft. We stock between 900 and 1,000 high elevation lakes every year and we do it in less than 70 hours flying time. An individual wilderness lake is exposed to a few seconds of a low flying plane every two or three years. Can you imagine the army of pack stock and horsemen that would be required to do the same job? Visualize the impact those pack trains would have on wilderness values. We believe aerial stocking intrudes much less on those values than primitive transport, irrespective of the great differences in costs and effectiveness.

The federal panelists have talked specifically of other concepts that warrant discussion. My allotted 10 minutes doesn't allow for comments on all areas of disagreement. But one basic concept advanced by the Forest Service cannot go unchallenged. The philosophy that fish stocking must be used as a tool for managing areas for wilderness values and cannot be done for the sole purpose of providing fishing opportunities is unacceptable to California and every other western state if it means reducing or terminating stocking. This philosophy is probably the "whole enchilada" in relation to differences on
fisheries management in wilderness areas. It is probably the root of all our conflicts over specifics.

Without going into a long dissertation on the subject, let me simply say that the philosophy is grossly discriminatory against anglers and, more importantly, it is based on an erroneous view of the relation between fishing and human use in the wilderness. The concept is unfairly discriminatory because it singles out one user group as a means of controlling overuse. If overuse is a problem, and it definitely is in some areas, we believe that controls should be applied to all user groups, not just people who consider fishing to be an important factor in the quality of their wilderness experience. A permit system would adequately control use without reducing the quality of the experience for many people. Locating campsites away from lake shores is another alternative that should be considered to reduce detrimental impact on environmental values.

A study by our Department, in cooperation with the El Dorado National Forest, in the Desolation Wilderness Area revealed that 60% of users did not fish. The remaining 40% included fishing tackle in their equipment, but only 6% cited fishing as the primary motive for their visit, while 34% gave fishing as a secondary reason for their trip. In other words, 94% of the wilderness anglers would have probably made their trip whether fish were available or not. They did indicate, however, that fishing was an important part of the back country experience.

Our findings generally agree with those of Hendee, Clark, and Dailey who studied angler attitudes and behavior at alpine lakes in two national forests in the State of Washington. Both studies strongly suggest that reducing fisheries would be of questionable value in controlling use generally. Increasing angling opportunities to obtain better dispersal of back country users might be a better approach, but even this would be only a partial solution to the overuse problem.
In resolving the differences between the state fish and wildlife agencies and the federal land managers, I recommend we both pay more attention to the biologists, social scientists, and others who have firsthand knowledge of the relationships of natural resources and people in the back country. The kind of knowledge acquired by Mr. Marcuson is essential for formulating realistic policies on wilderness fish management. I just wish that California had the personnel available to do the comprehensive survey work he had done in the proposed Beartooth Wilderness Area.

I'm not sure that I can agree fully with my counterpart in Oregon, John McKean, who places the primary blame for our problems on Congress. I see nothing in the Park or Wilderness acts specifically contrary to state fishery management goals. The problems stem almost entirely from administrative interpretations and philosophies in my view. And I'm pretty sure that we don't want to be considered bedfellows with the livestock and mining interests. But I can wholeheartedly agree that some changes in federal policy and attitudes are necessary if a traditional recreation use is to continue in our back country.
FUTURE CONSIDERATIONS

The final portion of the seminar was devoted to listing a few possible new directions in Idaho's mountain lake program.

Selective Closures Followed by Restrictive Regulation

In situations where there are several lakes in a group or chain it might be desirable to close one of the lakes until fish reach a large size and then institute a one or two fish limit on that lake. In a group of lakes one lake might be closed and recovering, one lake with quality but restricted fishing and the remainder of the lakes with ordinary fishing.

A closure of this type did work at Hidden Lake in North Idaho and produced excellent fishing for large fish.

More Restrictive Bag Limits for High Lakes

A high mountain lake trip is enhanced by seeing and catching a few fish. The experience is magnified if the fish are large.

There is normally no need or justification for a ten fish limit in mountain lakes. A limited bag and an 8-inch limit would seem desirable.

Stocking of Exotics

Unique species of which there is a relatively limited supply (goldens, grayling, etc.) should be stocked only in self-sustaining lakes and without the presence of other species. This program would provide more continuity in the presence of these species. Limits should be conservative to maximize benefits to a greater number of anglers.

Brook Trout Lakes

Most high lakes in Idaho that are stocked with brook trout result in stunted populations.

The easiest route around these stunted populations is, of course, to eradicate the lake and restock it with another species. However, if the public desires a brook trout lake for variety, it might be desirable to try an alternate approach. Attempts might be made to partially eradicate the lake periodically or to introduce a limited number of large predator species (Dolly Varden, brown, etc.)

Gammarus Introductions

Gammarus in a very desirable food item in those lakes in which it can survive because it is available into the late fall.

In their high lake visits, biologists should make an effort to determine if Gammarus is present and if not if the water quality is such to support this species. A total alkalinity of 30 ppm or more and at least 18 ppm total hardness is desirable. The presence of aquatic vegetation is also necessary for strong populations of this species.